• 제목/요약/키워드: 6-DOF environment model

검색결과 27건 처리시간 0.027초

Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver

  • Lee, Byung-Yoon;Yoo, Dong-Wan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.58-66
    • /
    • 2013
  • This paper addresses the performance of three different types of attitude control systems for the Quad-rotor UAV to perform the flip maneuver. For this purpose, Quad-rotor UAV's 6-DOF dynamic model is derived, and it was used for designing an attitude controller of the Quad-rotor UAV. Attitude controllers are designed by three different methods. One is the open-loop control system design, another is the PD control system design, and the last method is the sliding mode control system design. Performances of all controllers are tested by 6-DOF simulation. In case of the open-loop control system, control inputs are calculated by the quad-rotor dynamic model and thrust system model that are identified by the thrust test. The 6-DOF realtime simulation environment was constructed in order to verify the performances of attitude controllers.

미끄러운 노면에 적응하는 2족 보행 로봇의 제어 (Control of Biped Locomotion on A Slippery Surface)

  • 권오홍;박종현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.41-41
    • /
    • 2000
  • biped robots are expected to robustly traverse terrain with various unknown surfaces. The robot will occasionally encounter the unexpected events in made-for human environments. The slipping is a very real and serious problem in the unexpected events. The robot system must respond to the unexpected slipping after it has occurred and before control is lost. This paper proposes a reflex control method for biped robots to recover from slipage. Computer simulations with the 6-DOF environment model which consists of nonlinear dampers, nonlinear springs, and linear springs, show that the proposed method is effective in preventing fall-down due to slippage.

  • PDF

Study on Extension of the 6-DOF Measurement Area for a Model Ship by Developing Auto-tracking Technology for Towing Carriage in Deep Ocean Engineering Tank

  • Jung, Jae-sang;Lee, Young-guk;Seo, Min-guk;Park, In-Bo;Kim, Jin-ha;Kang, Dong-bae
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.50-60
    • /
    • 2022
  • The deep ocean engineering basin (DOEB) of the Korea Research Institute of Ship and Ocean Engineering (KRISO) is equipped with an extreme-environment reproduction facility that can analyze the motion characteristics of offshore structures and ships. In recent years, there have been requirements for a wide range of six-degree-of-freedom (6-DOF) motion measurements for performing maneuvering tests and free-running tests of target objects (offshore structures or ships). This study introduces the process of developing a wide-area motion measurement technology by incorporating the auto-tracking technology of the towing carriage system to overcome the existing 6-DOF motion measurement limitation. To realize a wide range of motion measurements, the automatic tracking control system of the towing carriage in the DOEB was designed as a speed control method. To verify the control performance, the characteristics of the towing carriage according to the variation in control gain were analyzed. Finally, a wide range of motions was tested using a model test object (a remotely operated vehicle (ROV)), and the wide-area motion measurement technology was implemented using an automatic tracking control system for a towing carriage.

모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어 (Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties)

  • 김준식;이동철;최영진
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어 (Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator)

  • 김준식;최유나;이동철;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

6 자유도 모델에 기반한 운항중인 함정의 3차원 RCS 측정 및 분석 기법 (Measurement and Analysis for 3-D RCS of Maritime Ship based on 6-DOF Model)

  • 곽상열;정회인
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.429-436
    • /
    • 2018
  • The RCS value of maritime ship is indicator of ship's stealth performance and it should be particularly measured for navy ship to ensure survivability on the battlefield. In the design phase of the navy ship, a RCS prediction should be performed to reduce RCS value and achieve ROC(Required Operational Capability) of the ship through configuration control. In operational phase, the RCS value of the ship should be measured for verifying the designed value and obtaining tactical data to take action against enemy missile. During the measurement of RCS for the ship, ship motion can be affected by roll and pitch in accordance with sea state, which should be analyzed into threat elevation from view point of enemy missile. In this paper, we propose a method to measure and analyze RCS of ship in 3-dimensions using a ship motion measuring instrument and a fixed RCS measurement system. In order to verify the proposed method, we conducted a marine experiment using a test ship in sea environment and compared the measurement data with RCS prediction value which is carried by prediction SW($CornerStone^{TM}$) using CAD model of the ship.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

Sensors Comparison for Observation of floating structure's movement

  • Trieu, Hang Thi;Han, Dong Yeob
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.219-221
    • /
    • 2014
  • The objective of this paper is to simulate the dynamic behavior of a floating structure model, using image processing and close-range photogrammetry, instead of the contact sensors. Previously, the movement of structure was presented through the exterior orientation estimation of a single camera by space resection. The inverse resection yields the 6 orientation parameters of the floating structure, with respect to the camera coordinate system. The single camera solution is of interest in applications characterized by restriction in term of costs, unfavorable observation conditions, or synchronization demands when using multiple cameras. This article discusses the theoretical determinations of camera exterior orientation based on Direct Linear Transformation and photogrammetric resection using least squares adjustment. The proposed method was used to monitor the motion of a floating model. The results of six degrees of freedom (6-DOF) by inverse resection show that the appropriate initial values by DLT can be effectually applied in least squares adjustment, to obtain the precision of exterior orientation parameters. Additionally, a comparison between the close-range photogrammetry and total station results was feasibly verified. Therefore, the proposed method can be considered as an efficient solution to simulating the movement of floating structure.

  • PDF

의사-임피던스 모델을 이용한 비평탄면에서의 2족보행로봇의 보행 (Locomotion of Biped Robots on Irregular Surface Based on Pseudo-Impedance Model)

  • 신현식;박종현;권오흥
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.667-673
    • /
    • 2010
  • 본 논문은 의사-임피던스 모델을 이용하여 2족보행로봇이 비평탄면에서 보행하는 제어기법을 제안한다. 의사-임피던스 모델은 인간이 보행 시, 발바닥이 지면과 순응하는 동작을 모사하였다. 지면과 접촉하면서 인간의 발바닥은 2가지 보행상태를 갖게 된다. 첫 번째 상태에서는 지면과 순응하기 위해 노력이나 의도적인 토크를 가하는 것이 아니라 수동적인 모션으로 순응하게 된다. 두 번째 상태에서는 지면과 접촉한 후, 적절한 토크를 유지하여 인간의 몸이 보행을 지속할 수 있게끔 유도하며 이를 하중이동단계라고 한다. 이러한 과정이 안정적으로 로봇의 보행을 유지할 수 있음을 12자유도의 2족보행로봇과 6축의 힘을 가지는 환경모델을 반영한 시뮬레이션을 통해 보여준다. 이러한 시뮬레이션결과가 제안된 의사-임피던스 모델이 효과적임을 보여준다.

국가공역에서의 유·무인기 혼합운용을 위한 시뮬레이션엔진 개발 및 검증 (Development and Validation of Manned and Unmanned Aircraft Simulation Engine for Integrated Operation in NAS)

  • 김동현;김준형;윤석준
    • 한국항공우주학회지
    • /
    • 제44권5호
    • /
    • pp.423-430
    • /
    • 2016
  • 최근 국가공역 내 유 무인항공기 혼합운용 시 충돌 감지 및 회피, 통신두절 등의 다양한 문제가 예상된다. 따라서 본 연구에서는 EUROCONTROL의 BADA와 NASA의 성능 데이터를 기반으로 유인기와 무인기 혼합운용 및 ATC/ATM 시뮬레이션을 동시에 수행할 수 있도록 필요한 환경 구축과 동적 모델링을 수행하였다. 또한 구성한 모델의 검증을 위하여 6-DOF 비행모델과 세그먼트별 동일한 입력값으로 시뮬레이션을 수행하고, RMSE결과 비교를 통해 구성한 모델의 적합함을 확인하였다.