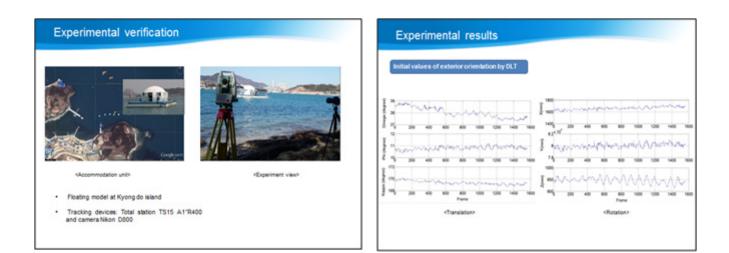
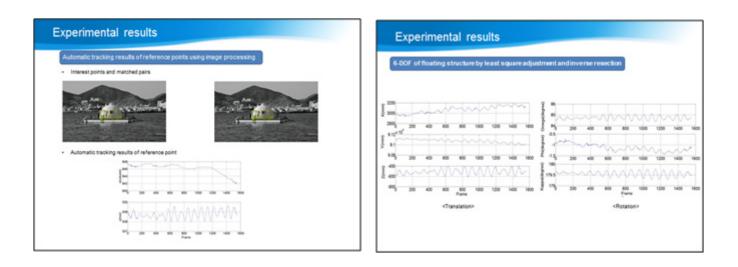
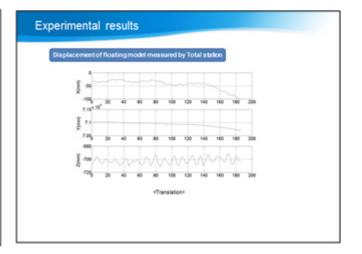

Sensors Comparison for Observation of floating structure's movement

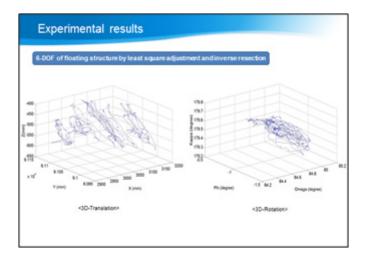
*Trieu, Hang Thi · † Han, Dong Yeob

* Department of Civil and Environment Engineering, Chonnam National University, Jeollanam-do, Korea † Department of Marine and Civil Engineering, Chonnam National University, Jeollanam-do, Korea


Abstract : The objective of this paper is to simulate the dynamic behavior of a floating structure model, using image processing and close-range photogrammetry, instead of the contact sensors. Previously, the movement of structure was presented through the exterior orientation estimation of a single camera by space resection. The inverse resection yields the 6 orientation parameters of the floating structure, with respect to the camera coordinate system. The single camera solution is of interest in applications characterized by restriction in term of costs, unfavorable observation conditions, or synchronization demands when using multiple cameras. This article discusses the theoretical determinations of camera exterior orientation based on Direct Linear Transformation and photogrammetric resection using least squares adjustment. The proposed method was used to monitor the motion of a floating model. The results of six degrees of freedom (6-DOF) by inverse resection show that the appropriate initial values by DLT can be effectually applied in least squares adjustment, to obtain the precision of exterior orientation parameters. Additionally, a comparison between the close-range photogrammetry and total station results was feasibly verified. Therefore, the proposed method can be considered as an efficient solution to simulating the movement of floating structure.


Key words : floating structure, 6-DOF, space resection, tracking, displacement, DLT


* Corresponding Author, Member, hozilla@chonnam.ac.kr


* Member, trieuhang@gmail.com

	ration results				
Arrine transform	4001 10110				
Rotation				Translation	
0.999010		0.001085		-0.03967	
0.000345		1.000342		-0.534424	
First im	ige	Second in	uge	Erver (pi	int)
First inc.		Second in		Former for	-
First im Column	Row	Second in Column	kaye Row	Error (pi Column	ret) Row
Column	Row	Column	Row	Column	Row
Column 847	Row 549	Column 847	Row 550	Column 0.30	Row 0.94
Column 847 967	Row 549 549	Column 847 948	Row 550 549	Column 0.30 -0.26	Row 0.94 0.29
Column 847 967 718	Row 549 549 539	Column 847 948 718	Row 550 549 539	Column 0.30 -0.26 -0.12	Row 0.94 0.29 0.09
Column 847 967 718 843	Row 549 549 539 624	Column 847 968 718 843	Row 550 549 539 625	Column 0.30 -0.26 -0.12 0.12	Row 0.94 0.29 0.09 -0.31
Column 847 947 718 843 914	Row 549 549 539 624 629	Column 847 968 718 843 918	Row 550 549 539 625 629	Column 0.30 -0.26 -0.12 0.12 0.37	Row 0.94 0.29 0.09 -0.31 0.03

Conclusion

- This paper proposed a methodology for measuring the movement of floating structure using a camera video
 - The technique bases on image processing and close-range photogrammetry to provide an effective solution.
 - In order to verify this research, a field experiment was carried out with a floating accommodation using a digital camera with 29fps video.
 - A comparison between the close-range photogrammetry and total station results was feasibly verified
- Proposed method can be considered as a cost-effective, simple, and safe proc edure, to be used in surveying instead of existing sensors.
- Further research will be conducted in regard to fully integrating the modeling methodology using more than one camera in movement observation.

Acknowledgment :

This research was supported by a grant(10 RTIP B01) from Regional Development Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.