• Title/Summary/Keyword: 6-DOF

Search Result 604, Processing Time 0.033 seconds

Direct identification of modal parameters using the continuous wavelet transform, case of forced vibration

  • Bedaoui, Safia;Afra, Hamid;Argoul, Pierre
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this paper, a direct identification of modal parameters using the continuous wavelet transform is proposed. The purpose of this method is to transform the differential equations of motion into a system of algebraic linear equations whose unknown coefficients are modal parameters. The efficiency of the present method is confirmed by numerical data, without and with noise contamination, simulated from a discrete forced system with four degrees-of-freedom (4DOF) proportionally damped.

Development of a parallel link typed wrist for robotic precision assembly (정밀조립을 위한 병렬다관절 구조를 가진 로봇손목기구의 개발)

  • 문창렬;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.281-286
    • /
    • 1993
  • In this paper, a parallel link typed wrist is developed for robotic precision assembly. The developed wrist can make the corrective motion required for compensating lateral and tilting errors. The mechanism of this wrist is one example of a motion simulator generating 6 DOF motion in space by 6 actuators connected in paralle. To make the wrist more compact, miniature DC motors containing reduction gears and servo system were used. The parallel link architecture enables a high positioning accuracy and high nominal load capacity. In this study, inverse kinematic problem is solved by using a Denavet-Hartenberg method and a simulational result about workspace of the proposed parallel mechanism is obtained.

  • PDF

Dynamic Analysis of Underwater Tracked Vehicle on Extremely Soft Soil by Using Euler Parameters (오일러 매개변수를 이용한 해저연약지반 무한궤도 차량의 동적거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.93-100
    • /
    • 2006
  • This paper is concerned with the dynamic analysis of an underwater tracked vehicle, operating on extremely soft soil of the deep-seafloor. The vehicle is assumed as a rigid-body with 6-dof. The orientation of the vehicle is defined by four Euler parameters. To solve the motion equations of the vehicle, the Newmark numerical integrator is used in the incremental-iterative algorithm. The normalization constraint of Euler parameters is satisfied by using of a sequential updating method. The hydrodynamic force and moment are included in the tracked vehicle's dynamics. The hydrodynamic effects on the performance of tracked vehicles are investigated through numerical simulations.

Design of Glide Slope Capture Logic Using Model Inversion

  • Park, Hyung-Sik;Ha, Cheol-Keun;Kim, Byoungsoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.50.6-50
    • /
    • 2001
  • This paper deals with a design of nonlinear glide slope capture logic using dynamic model inversion in singular perturbation, which is applicable to the autolanding in ILS. Aircraft dynamics are separated into the fast time-scale variables, related with the inner-loop design, and the slow time-scale variables, related with the outer-loop design. It is assumed that the aircraft starts landing at 1000ft of altitude, -2.5deg of flight path angle, and 250ft/sec of velocity. In the outer-loop design, commands of altitude and velocity are selected and thereby the pseudo-controls of power level and pitch rate are determined. Also the elevator input to the aircraft is determined in the inner-loop design. The final design is evaluated in 6 DOF simulation model of the associated aircraft, in which the actuator models are not included. The results show the satisfactory autolanding ...

  • PDF

A Study on RT Component Implementation for Cooperation Robot of 7 Degree of Freedom Manipulator using RT Middleware (RT 미들웨어를 이용한 7자유도 매니퓰레이터 협업로봇을 위한 RT 컴포넌트 구현에 관한 연구)

  • Moon, Yong-Seon;Bae, Young-Chul;Roh, Sang-Hyun;Cho, Kwang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.142-147
    • /
    • 2011
  • In this paper, we make a RT component as a configuration element of cooperation robot of 7 degree of freedom manipulator using RTM which was adapted international standardization among the robot middleware technology. We implemented the one system by connecting the RT component of elements of a robot organize to each other based on middleware network and tested an operation of implemented system using the 7 degree of freedom manipulator which was real made.

A Study on Hovering Flight Control for a Model Helicopter (모형 헬리콥터 정지비행제어에 관한 연구)

  • 심현철;이은호;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1399-1411
    • /
    • 1994
  • A model helicopter has more versatile flight capability than the fixed-wing aircraft and it can be used as an unmaned vehicle in hazardous area. A helicopter, similar to other aircrafts, is an unstable, multi-input multi-output nonlinear system exposed to strong disturbance. So it should be controlled by robust control theories that can be applied to multivariable systems. In this study, motion equations of hovering are established, linearized and transformed into a state equation form. Various parameters are measured and calculated in other to obtain the stability derivatives in the state equation. Hovering flight controller is designed using the digital LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) control theory. The designed controller is tested by the nonlinear simulations and implemented on an IBM-PC/386. Experiments were carried out on a model helicopter attached to the 3-DOF gimbal. The designed controller showed satisfactory hovering capability to maintain the hovering for more than 40 seconds.

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

A Fast Forward Kinematic Analysis of Stewart Platform (스튜어트 플랫폼의 빠른 순기구학 해석)

  • Ha, Hyeon-Pyo;Han, Myeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.339-352
    • /
    • 2001
  • The inverse kinematics problem of Stewart platform is straightforward, but no closed form solution of the forward kinematic problem has been presented. Since we need the real-time forward kinematic solution in MIMO control and the motion monitoring of the platform, it is important to acquire the 6 DOF displacements of the platform from measured lengths of six cylinders in small sampling period. Newton-Raphson method a simple algorithm and good convergence, but it takes too long calculation time. So we reduce 6 nonlinear kinematic equations to 3 polynomials using Nairs method and 3 polynomials to 2 polynomials. Then Newton-Raphson method is used to solve 3 polynomials and 2 polynomials respectively. We investigate operation counts and performance of three methods which come from the equation reduction and Newton-Raphson method, and choose the best method.

A study on the hydrodynamic coefficients estimation of the 6-DOF model of an underwater vehicle with EKF (확장칼만필터를 이용한 수중운동체의 6자유도 운동을 위한 동유체력계수 추정에 관한 연구)

  • 전창완;박성택;이장규;이동권;최중락;양승윤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.766-771
    • /
    • 1992
  • The hydrodynamic coefficients estimation problem is important to develop an underwater vehicle and design a controller for it. In this paper, an identification theory, the Extended Kalman Filter, is applied to this parameter estimation problem. In the case that a process noise is not used, all of the parameters are almost exactly converged to the true values respectively. When a process noise is used, all of the parameters are converged to the true values, too, although some parameter estimates are slightly biased. The comparisons of the two trajectories between those generated by the true parameters and those by the estimated parameters show that the parameter estimation problem is well-solved.

  • PDF

A Study on the Development of 6DOF Vibration Simulator for Human Vibration Experiment (인체진동 실험용 6 자유도 가진기 개발에 관한 연구)

  • Woo, Chun-Kyu;Kim, Soo-Hyun;Kwak, Yoon-Keun;Cheung, Wan-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.144-150
    • /
    • 2000
  • In this paper, we introduce a modified six-degrees-of-freedom parallel-link manipulator, which will be applied to the human vibration experiments. We analyze the inverse kinematics and workspace of this manipulator and comprehend the characteristics of kinematics analyzed. Additionally, solutions of forward kinematics are obtained through the iterative Newton-Raphson method known as one of the most used numerical analysis. Finally, dynamic equation of the manipulator is derived in closed form through the Newton-Euler approach, which will be used for the development of control software.

  • PDF