• Title/Summary/Keyword: 5th percentile female dummy

Search Result 7, Processing Time 0.016 seconds

Development of Finite Element Model of Hybrid III 5th Percentile Female Dummy (Hybrid III 5% 성인 여성 더미의 유한요소 모델 개발)

  • Yi, Sang-Il;Mohan, Pradeep K.;Kan, Cing-Dao Steve;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.18-30
    • /
    • 2010
  • As the automobile industry is developing, the number of deaths and injuries has increased. To reduce the damages from automobile accidents, the government of each country proposes experimental conditions for reproducing the accident and establishes the vehicle safety regulations. Automotive manufacturers are trying to make safer vehicles by satisfying the requirements. The Hybrid III crash test dummy is a standard Anthropomorphic Test Device (ATD) used for measuring the occupant's injuries in a frontal impact test. Since a real crash test using a vehicle is fairly expensive, a computer simulation using the Finite Element Method (F.E.M.) is widely used. Therefore, a detailed and robust F.E. dummy model is needed to acquire more accurate occupant injury data and behavior during the crash test. To achieve this goal, a detailed F.E. model of the Hybrid III 5th percentile female dummy is constructed by using the reverse engineering technique in this research. A modeling process is proposed to construct the F.E. model. The proposed modeling process starts from disassembling the physical dummy. Computer Aided Design (CAD) geometry data is constructed by three-dimensional (3-D) scanning of the disassembled physical dummy model. Based on the geometry data, finite elements of each part are generated. After mesh generation, each part is assembled with other parts using the joints and rigid connection elements. The developed F.E. model of dummy is simulated based on the FMVSS 572 validation regulations. The results of simulation are compared with the results of physical tests.

A Study on Protection of Rear Submarine of 5th percentile Female Dummy (5th%ile 여성 인체모형 뒷좌석 서브마린 방지에 대한 연구)

  • Kim, Hong Gyu;Yum, Sun Ill;Jin, Wook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • Since 2015, Euro-NCAP and C-NCAP have enhanced regulation on submarine of rear female passenger. This submarine regulation is a big obstacle to achieve the highest level crash performance. So the objective of this study is to develop new technical way to protect rear female passenger against submarine. In this study, we figured out how design factors of seatbelt affect submarine of rear female passenger by sled test. And we verified that rear passenger submarine can be improved by increasing intersection angle of seatbelt anchor and rotation amount of seatbelt buckle. Based on these results, this paper proposes a new invention of seatbelt buckle and anchor that can improve rear passenger submarine. One is seatbelt buckle that can be detached from stopper to prevent rotation and the other is seatbelt anchor that can be changed the structure so as to incline forward during crash. Finally we proved that submarine of rear female passenger can be improved by the effectiveness of new inventions.

Improvement of Passenger Airbag Based on the Injury Assessment of the 5th Percentile Female Dummy (작은 체형의 여성 승객을 고려한 조수석 에어백의 설계 개선)

  • Kwon, Yul;Kim, Kwon-Hee;Son, Chang-Kyu;Kim, Hyung-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • Automobile airbag deployment process has been studied with MADYMO software. Based on the FMVSS208 and USNCAP(United States New Car Assessment Program) regulations, four parameters were chosen for the design improvement with reference to the 5th percentile female passenger dummy: time to fire, vent hole size, tether length and tank test pressure of inflator. Sensitivity analyses based on orthogonal arrays show that enhanced protection of small females can be achieved with improved USNCAP rating within the boundary of FMVSS 208.

Numerical Simulation of OOP(Out-of-Position) Problem with$5_{th}$ Percentile Female F.E Model ($5_{th}$ Percentile 성인 여성 유한요소 모델을 이용한 OOP(Out-of-Position) 문제에 대한 수치해석)

  • 나상진;최형연;이진희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The out-of-positioned small female drivers are most likely to be injured during airbag deployment due to their stature and proximity to the steering wheel and airbag module. In order to investigate the injury mechanisms, some experimental studies with Hybrid III 5% female dummy and with female cadavers could be found from the open literatures. However, the given information from those experimental studies is quite limited to the standard conditions and might not be enough to estimate the airbag inflation aggressiveness regarding on the occupant responses and injury. In this study, a finite element analysis has been performed in order to investigate the airbag-induced injuries. A finite element 5% female human model in anatomical details has been developed. The validation results of the model are also introduced in this paper.

Development of $5^{th}$ percentile female finite Element Model for Crashworthiness Simulation - Part II Detail Modeling of Internal Components (충돌 안전도 해석을 위한 $5^{th}$ percentile 성인 여성 유한요소 모델 개발 - Part II 신체 부위 별 상세 모델 개발)

  • 나상진;최형연;이진희
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2004
  • The finite element modeling of small female occupant for crash simulation is presented in this paper subsequently to the part I of articulated rigid body model. The limbs and internal components are additionally modeled by joining them to the articulated rigid body model for predicting the crash injuries such as bone fractures and joint dislocations. The behavioral characteristics of each limbs and internal components were validated against available cadaveric test results. Accordingly, the human model proposed in this paper could be utilized for the investigation of impact injury mechanism and further complement the lacking biofidelity of current crash dummy.

A study of rear seat belts geometric characteristics for rear seated occupants protections (뒷좌석 승객 보호를 위한 안전띠의 기하학적 특성에 대한 연구)

  • Youn, Younghan;Park, Jiyang;Lee, Seungsang;Kim, Minyoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The protection of frontal seat passengers in both driver and front seated occupant has been more focused from the auto industries as well as regulatory bodies more than 40 years. Recently, their interests have been extended to rear seat occupants especially children and female occupants. However, the current available safety devices for the rear seat occupants are seat belt only. According to the previous researchers, the injury level of the rear seat passengers tend to be higher than the injury level of the frontal seat passengers. In this study, the optimal location of seat belts anchorages to enhance rear passengers crashworthiness are studied. FEM models are designed in accordance with regulation of KMVSS102, UN R44, UN R16, and UN R14. and three point belts are fitted on the HybridIII 5th percentile dummy and HybridIII 50th percentile dummy. The combined injury value used HIC15, Nij, Chest deflection, Femur force are used to evaluate rear seat belt anchorage optimal locations.

The Optimization of Passenger Seat Belt Design for Female Passenger (여성 승객을 고려한 동승자석 안전벨트의 설계 최적화)

  • Kim, Yun-Bae;Kim, Hyung-Jun;Han, Jae-Nyung;Kim, Hyung-Il;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.10-15
    • /
    • 2012
  • The design of automobile occupant seat belt system has been studied by using MADYMO. Based on the FMVSS 208 (Federal Motor Vehicle Safety Standards 208) and the USNCAP (United States New Car Assessment Program) regulations, seat belt design parameters were chosen for the design improvement to the 5th percentile female dummy: limit force of load limiter, time to fire of shoulder belt, inlet length of shoulder belt, inlet length of lap belt. The design of experiment method was employed to optimize the design parameters of passenger seat belt. Range of injury probability due to the change of H-point position was estimated by the simulation.