• Title/Summary/Keyword: 5VOC

Search Result 346, Processing Time 0.029 seconds

The Characteristics of the Appearance and Health Risks of Volatile Organic Compounds in Industrial (Pohang, Ulsan) and Non-Industrial (Gyeongju) Areas

  • Jung, Jong-Hyeon;Choi, Bong-Wook;Kim, Mi-Hyun;Baek, Sung-Ok;Lee, Gang-Woo;Shon, Byung-Hyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.12.1-12.8
    • /
    • 2012
  • Objectives: The aim of this study was to identify the health and environmental risk factors of air contaminants that influence environmental and respiratory diseases in Gyeongju, Pohang and Ulsan in South Korea, with a focus on volatile organic compounds (VOCs). Methods: Samples were collected by instantaneous negative pressure by opening the injection valve in the canister at a fixed height of 1 to 1.5 m. The sample that was condensed in $-150^{\circ}C$ was heated to $180^{\circ}C$ in sample pre-concentration trap using a 6-port switching valve and it was injected to a gas chromatography column. The injection quantity of samples was precisely controlled using an electronic flow controller equipped in the gas chromatography-mass spectrometer. Results: The quantity of the VOC emissions in the industrial area was 1.5 to 2 times higher than that in the non-industrial area. With regards to the aromatic hydrocarbons, toluene was detected at the highest level of 22.01 ppb in Ulsan, and chloroform was the halogenated hydrocarbons with the highest level of 10.19 ppb in Pohang. The emission of toluene was shown to be very important, as it accounted for more than 30% of the total aromatic hydrocarbon concentration. Conclusions: It was considered that benzene in terms of the cancer-causing grade standard, toluene in terms of the emission quantity, and chloroform and styrene in terms of their grades and emission quantities should be selected for priority measurement substances.

Research Trends for the Deep Learning-based Metabolic Rate Calculation (재실자 활동량 산출을 위한 딥러닝 기반 선행연구 동향)

  • Park, Bo-Rang;Choi, Eun-Ji;Lee, Hyo Eun;Kim, Tae-Won;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate the prior art based on deep learning to objectively calculate the metabolic rate which is the subjective factor for the PMV optimum control and to make a plan for future research based on this study. Methods: For this purpose, the theoretical and technical review and applicability analysis were conducted through various documents and data both in domestic and foreign. Results: As a result of the prior art research, the machine learning model of artificial neural network and deep learning has been used in various fields such as speech recognition, scene recognition, and image restoration. As a representative case, OpenCV Background Subtraction is a technique to separate backgrounds from objects or people. PASCAL VOC and ILSVRC are surveyed as representative technologies that can recognize people, objects, and backgrounds. Based on the results of previous researches on deep learning based on metabolic rate for occupational metabolic rate, it was found out that basic technology applicable to occupational metabolic rate calculation technology to be developed in future researches. It is considered that the study on the development of the activity quantity calculation model with high accuracy will be done.

Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345

  • Singh, Digar;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.199-209
    • /
    • 2018
  • Volatile organic compounds (VOCs) are increasingly been recognized as the chemical mediators of mold interactions, shaping their community dynamics, growth, and metabolism. Herein, we selectively examined the time-correlated (0 D-11 D, where D = incubation days) effects of intraspecies VOC-mediated interactions (VMI) on Aspergillus oryzae KCCM 60345 (S1), following co-cultivation with partner strain A. oryzae KACC 44967 (S2), in a specially designed twin plate assembly. The comparative evaluation of $S1_{VMI}$ (S1 subjected to VMI with S2) and its control ($S1_{Con}$) showed a notable disparity in their radial growth ($S1_{VMI}$ < $S1_{Con}$) at 5 D, protease activity ($S1_{VMI}$ > $S1_{Con}$) at 3-5 D, amylase activity ($S1_{VMI}$ < $S1_{Con}$) at 3-5 D, and antioxidant levels ($S1_{VMI}$ > $S1_{Con}$) at 3 D. Furthermore, we observed a distinct clustering pattern for gas chromatography-time of flight-mass spectrometry datasets from 5 D extracts of $S1_{VMI}$ and $S1_{Con}$ in principle component analysis (PC1: 30.85%; PC2: 10.31%) and partial least squares discriminant analysis (PLS-DA) (PLS1: 30.77; PLS2: 10.15%). Overall, 43 significantly discriminant metabolites were determined for engendering the metabolic variance based on the PLS-DA model (VIP > 0.7, p < 0.05). In general, a marked disparity in the relative abundance of amino acids ($S1_{VMI}$ > $S1_{Con}$) at 5 D, organic acids ($S1_{VMI}$ > $S1_{Con}$) at 5 D, and kojic acid ($S1_{VMI}$ < $S1_{Con}$) at 5-7 D were observed. Examining the headspace VOCs shared between S1 and S2 in the twin plate for 5 D incubated samples, we observed the relatively higher abundance of C-8 VOCs (1-octen-3-ol, (5Z)-octa-1,5-dien-3-ol, 3-octanone, 1-octen-3-ol acetate) having known semiochemical functions. The present study potentially illuminates the effects of VMI on commercially important A. oryzae's growth and biochemical phenotypes with subtle details of altered metabolomes.

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

Receptor Model(CMB) and Source Apportionments of VOCs in Seoul Metropolitan Area (수용모델(CMB)을 이용한 수도권 VOCs의 배출원별 기여율 추정)

  • Han, Jin-Seok;Hong, Y.D.;Shin, S.A.;Lee, S.U.;Lee, S.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.227-235
    • /
    • 2005
  • Source contribution for VOCs collected in Seoul metropolitan area was conducted using PAMs (Photochemical assessment monitoring system) data and CMB(Chemical Mass Balance) model8.0, in order to estimate spatial and temporal variations of VOCs source contribution in that area, and also to compare with corresponding emission inventory. VOCs data used in model calculation were collected at 6 different sites of PAMs(Seokmori, Guwoldong, Simgokdong, Bulgwangdong, Jeongdong and Yangpyeong) and 22 out of 56 VOCs species were analyzed from June 2002 to march 2003 and used for CMB model estimation. The result showed that vehicle exhaust, coating and energy combustion were important sources of VOCs in Seoul metropolitan area, averaging 32.6%, 25.5% and 25.1%, respectively. In this study as well as other references, it was revealed that vehicle exhaust is the main contributor of urban area VOCs, but there is remarkable contrast between emission inventory and model estimation. Vehicle exhaust portion is seriously underestimated while coating is usually overestimated in emission estimates, compared to CMB results. Therefore, it is considered to assert and confirm the uncertainty of emission estimates and clarify the distinction between two other source apportionment methods.

Characterization of Volatile Organic Compounds in New Residential Buildings Before Moving-in

  • Shin, Seung-Ho;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • This study investigated the characteristics of selected volatile organic compounds(VOCs) in newly-finished residential buildings, before the occupants moved in. This investigation was carried out by measuring the indoor and outdoor concentrations of selected VOCs before the occupants moved in and by utilizing an indoor mass balance model. Among 25 target VOCs, five aromatics(benzene, ethyl benzene, toluene, m,p-xylene, and o-xylene) were detected in all samples of both indoor and outdoor air. Toluene was most abundant VOC in the indoor air of new apartments, with a median value of 168 mg $m^{-3}$. Unlike other VOCs, halogenated compounds would not be significantly emitted from building materials. The indoor air concentrations of all selected VOCs, except for 1,3,5-trimethyl benzene, exhibited significant correlations each other, while for outdoor air concentrations, five aromatics only were significantly correlated between them. The emission rate of toluene was higher for the current study(median value, 76.8 mg $m^{-2}\;h^{-1}$) than for a previous study, while the emission rates of limonene, a-pinene and b-pinene(geometric means of 2.4, 13.8 and 9.6 mg $m^{-2}\;h^{-1}$, respectively) were lower and the emission rates of m,p-xylene and 2-butanone(geometric means of 10.9 and 21.3 mg $m^{-2}\;h^{-1}$, respectively) were similar. Although there were a few exceptions, the emission strengths are likely proportional to indoor temperature, and appear to reversely proportional to air exchange rate.

GHG-AP Integrated Sink/Emission Inventories and Environmental Value Analysis in Vegetation Sector of Seoul (서울시 식생부문 온실가스-대기오염 통합 흡수/배출량 인벤토리 및 환경가치분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.72-82
    • /
    • 2015
  • We constructed greenhouse gas (GHG) and air pollution (AP) integrated sink/emission inventories and evaluated the environmental value for the vegetation sector in Seoul during year 2010. The data of vegetation, classified into four sectors of cultivated land, forest land, park and street tree, were obtained from Statistics Korea and Seoul City. Based on the previous studies, only $CO_2$ was chosen as GHG sink by vegetation. $NO_2$ and $SO_2$ were chosen as AP sink by vegetation, while isoprene, monoterpene, other VOC (OVOC) and NH3 were chosen as AP emission from vegetation. Estimation methodology and sink/emission factors were gathered from reports and published literatures. Estimated GHG sink by vegetation during year 2010 was 12,987,173 $tonCO_{2eq}$, of which approximately 1/4 was from pure vegetation and the remaining 3/4 from vegetation soil. AP sink and emission were estimated to be 23,309 tonAP and 2,629,797 tonAP, respectively. The analysis by administrative districts in Seoul revealed that among 25 districts, Seocho-gu, Nowon-gu, Eunpyeong-gu, Gwanak-gu and Gangbuk-gu were the major districts in GHG and AP sink/emission inventories for vegetation sector. Environmental value of vegetation as a function of GHG and AP sink, was estimated as 800 billion won, corresponding to 5% of the total cost of the forest land in Korea evaluated as a public function.

A Study on Measurement of the Indoor Air Quality in Modular Mock-up Housing (모듈러 목업주택의 실내공기질 실측조사 연구)

  • Chun, Chu-Young;Kim, Jong-Yeob;Bang, Jong-Dae;Kim, Gap-Deug
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 2015
  • Recently, It has been much interest in modular housing construction. so, The purpose of this study was to investigate the characteristics of the indoor air quality in modular mock-up housing. We measured indoor air quality(formaldehyde, benzene, toluene, ethylbenzene, xylene, styrene) of two modular mock-up units that built-in furniture is installed and uninstalled. As a result, the pollutants of built-in furniture installed unit were emitted more than built-in furniture uninstalled unit. But after bake-out and ventilation, emission concentrations of two modular mock-up units were similar and were below Indoor Air Quality recommendation standards. Built-in furniture is likely to affect the emission concentration of toluene