Browse > Article
http://dx.doi.org/10.4014/jmb.1711.11005

Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345  

Singh, Digar (Department of Bioscience and Biotechnology, Konkuk University)
Lee, Choong Hwan (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.2, 2018 , pp. 199-209 More about this Journal
Abstract
Volatile organic compounds (VOCs) are increasingly been recognized as the chemical mediators of mold interactions, shaping their community dynamics, growth, and metabolism. Herein, we selectively examined the time-correlated (0 D-11 D, where D = incubation days) effects of intraspecies VOC-mediated interactions (VMI) on Aspergillus oryzae KCCM 60345 (S1), following co-cultivation with partner strain A. oryzae KACC 44967 (S2), in a specially designed twin plate assembly. The comparative evaluation of $S1_{VMI}$ (S1 subjected to VMI with S2) and its control ($S1_{Con}$) showed a notable disparity in their radial growth ($S1_{VMI}$ < $S1_{Con}$) at 5 D, protease activity ($S1_{VMI}$ > $S1_{Con}$) at 3-5 D, amylase activity ($S1_{VMI}$ < $S1_{Con}$) at 3-5 D, and antioxidant levels ($S1_{VMI}$ > $S1_{Con}$) at 3 D. Furthermore, we observed a distinct clustering pattern for gas chromatography-time of flight-mass spectrometry datasets from 5 D extracts of $S1_{VMI}$ and $S1_{Con}$ in principle component analysis (PC1: 30.85%; PC2: 10.31%) and partial least squares discriminant analysis (PLS-DA) (PLS1: 30.77; PLS2: 10.15%). Overall, 43 significantly discriminant metabolites were determined for engendering the metabolic variance based on the PLS-DA model (VIP > 0.7, p < 0.05). In general, a marked disparity in the relative abundance of amino acids ($S1_{VMI}$ > $S1_{Con}$) at 5 D, organic acids ($S1_{VMI}$ > $S1_{Con}$) at 5 D, and kojic acid ($S1_{VMI}$ < $S1_{Con}$) at 5-7 D were observed. Examining the headspace VOCs shared between S1 and S2 in the twin plate for 5 D incubated samples, we observed the relatively higher abundance of C-8 VOCs (1-octen-3-ol, (5Z)-octa-1,5-dien-3-ol, 3-octanone, 1-octen-3-ol acetate) having known semiochemical functions. The present study potentially illuminates the effects of VMI on commercially important A. oryzae's growth and biochemical phenotypes with subtle details of altered metabolomes.
Keywords
Volatile organic compounds; growth rates; Aspergillus oryzae; mass spectrometry; twin plate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Frisvad JC, Petersen LM, Lyhne EK, Larsen TO. 2014. Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri. PLoS One 9: e94857.
2 Sun D, She J, Gower JL, Stokes CE, Windham GL, Baird RE, et al. 2016. Effects of growth parameters on the analysis of Aspergillus flavus volatile metabolites. Separations 3: 13.   DOI
3 Bernfeld P. 1955. Amylases, ${\alpha}$ and ${\beta}$. Methods Enzymol. 1: 149-158.
4 Combet E, Henderson J, Eastwood DC, Burton KS. 2006. Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47: 317-326.   DOI
5 Erika HG, Garzia A, Cordobes S, Espeso EA, Ugalde U. 2011. 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol. 115: 393-400.   DOI
6 Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37: 955-964.   DOI
7 Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527-535.   DOI
8 Bal J, Yun SH, Song HY, Yeo SH, Kim JH, Kim JM, et al. 2014. Mycoflora dynamics analysis of Korean traditional wheat-based nuruk. J. Microbiol. 52: 1025-1029.   DOI
9 Ponnusamy K, Lee S, Lee CH. 2013. Time-dependent correlation of the microbial community and the metabolomics of traditional barley nuruk starter fermentation. Biosci. Biotechnol. Biochem. 77: 683-690.   DOI
10 Wicklow DT, Cesaria EM, Quee LY. 2007. Diversity of Aspergillus oryzae genotypes (RFLP) isolated from traditional soy sauce production within Malaysia and Southeast Asia. Mycoscience 48: 373-380.
11 Kim HR, Lee AR, Kim JH. 2017. Characteristics of Korean alcoholic beverages produced by using rice nuruks containing Aspergillus oryzae N159-1. Mycobiology 45: 119-122.   DOI
12 Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, et al. 2016. Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6: 1495.
13 Fiers M, Lognay G, Fauconnier ML, Jijakli MH. 2013. Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One 8: e66805.   DOI
14 Miyamoto K, Murakami T, Kakumyan P, Keller NP, Matsui K. 2014. Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. PeerJ 2: e395.   DOI
15 Schmidt R, Jager V, Zuhlke D, Wolff C, Bernhardt J, Cankar K, et al. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 13: 862.
16 Briard B, Heddergott C, Latge J. 2016. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio 7: 00219-16.
17 Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J. 2005. 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol. Ecol. 54: 67-75.   DOI
18 Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP. 2005. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151: 1809-1821.   DOI
19 Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, et al. 2005. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305.   DOI
20 Kum SJ, Yang SO, Lee SM, Chang PS, Choi YH, Lee JJ. 2015. Effects of Aspergillus species inoculation and their enzymatic activities on the formation of volatile components in fermented soybean paste (doenjang). J. Agric. Food Chem. 63: 1401-1418.   DOI
21 Skogerson K, Wohlgemuth G, Barupal DK, Fiehn O. 2011. The volatile compound BinBase mass spectral database. BMC Bioinformatics 12: 321.   DOI
22 Bruce A, Verrall S, Hackett CA, Wheatley RE. 2004, Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58: 193-198.
23 Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J. 1997 Ammonia mediates communication between yeast colonies. Nature 390: 532-536.   DOI
24 Garbeva P, Hordijk C, Gerards S, de Boer W. 2014. Volatilemediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5: 289.
25 Yin G, Padhi S, Lee S, Hung R, Zhao G, Bennett JW. 2015. Effects of three volatile oxylipins on colony development in two species of fungi and on Drosophila larval metamorphosis. Curr. Microbiol. 71: 347.
26 Wickerman LJ. 1951. Taxonomy of Yeasts. US Department of Agriculture Technical Bulletin No. 1029. US Department of Agriculture, Washington, DC.
27 Lee S, Yap M, Behringer G, Hung R, Bennett JW. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3: 7.   DOI
28 Jones SE, Elliot MA. 2017. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol. 25: 522-531.   DOI
29 Kim AJ, Choi JN, Kim J, Kim HY, Park SB, Yeo SH, et al. 2012. Metabolite profiling and bioactivity of rice koji fermented by Aspergillus strains. J. Microbiol. Biotechnol. 22: 100-106.   DOI
30 Kim AJ, Choi JN, Kim J, Yeo SH, Choi JH, Lee CH. 2012. Metabolomics-based optimal koji fermentation for tyrosinase inhibition supplemented with Astragalus radix. Biosci. Biotechnol. Biochem. 76: 863-869.   DOI
31 Chancharoonpong C, Hsieh PC, Sheu SC. 2012. Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. APCBEE Procedia 2: 57-61.   DOI
32 Oda K, Kobayashi A, Ohashi S, Sano M. 2011. Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci. Biotechnol. Biochem. 75: 1832-1834.   DOI