• Title/Summary/Keyword: 5Ton Truck

Search Result 23, Processing Time 0.024 seconds

Wind tunnel study on drag reduction of a 5 ton truck using additive devices (유동제어용 부착물을 이용한 5톤 화물차의 항력 감소에 관한 실험적 연구)

  • Lee, EuiJae;Hwang, BaeGeun;Kim, JeongJae;Lee, SangJoon
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • There have been many attempts to reduce the cost of transportation. Especially, drag reduction of heavy vehicles has enormous influence on energy saving by reducing the driving power of the vehicles. In this study, the effects of drag-reducing additive devices such as side skirt, boat tail and cab-roof fairing on the drag reduction of a 5 ton truck model were experimentally investigated. The aerodynamic performance of these flow-control devices attached to heavy vehicle was evaluated through wind tunnel test. In addition, flow patterns around the truck model were visualized by using smoke tube method. The drag coefficient is reduced by up to 5.7%, 7.16% and 22.2% by the side skirt, boat tail and cab-roof fairing, respectively. The interactive effect of the side skirt and boat tail was also investigated.

A Study of Development of Regrigerated Truck Small Scale Cooling System and Key-Part using Natural Refrigerants. (자연냉매인 CO2를 이용한 냉동탑차 냉장시스템과 핵심부품개발에 관한 연구)

  • Jeong, Se Jin;Park, Seong Sin;Min, Ho Ki;Jo, Ga Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this study, we developed a cooling system for 1 ton size refrigeration vehicle using carbon dioxide natural refrigerant among hydrocarbon type refrigerant which is attracting attention as environment friendly refrigerant, and designed a heat exchanger and a unit cooler to raise COP. In addition, existing CNG 5 ton refrigerated trucks were converted into LNG vehicles to increase the efficiency of the cooling system and ensure safety against CNG. As a result, environmentally friendly refrigerated trucks using natural refrigerants of 1 ton and 5 ton sizes were developed.

Kinematics and Structural Analysis for 5ton cargo-truck Elecrto-Hydraulic Sliding Deck Systems Manufacturing and Design of winch system for safety (5ton 카고트럭의 전동 유압 슬라이딩 데크 시스템 개발을 위한 기구학 해석 및 전산구조해석과 안전을 위한 윈치 시스템 설계)

  • Kim, Man-Jung;Song, Myung-Suk;Kim, Jong-Tae;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, the basic design of the electric hydraulic sliding deck system was developed to develop the electric hydraulic sliding deck which can easily upgrade the loading and unloading of the agricultural machinery by modifying the load of the existing 5ton cargo truck. Through the kinematic analysis, The length and structure of the specimens were designed and the materials were selected for safety and economical efficiency through structural analysis. For the basic design of the sliding deck system, we surveyed the agricultural machinery to be transported and selected necessary elements. And have devised a system using a hydraulic cylinder that can meet selected factors. Through the simplified modeling and kinematic diagram, the operating structure of the sliding deck system was grasped and the minimum length and structure of the sliding deck were devised, In order to select the sliding deck material satisfying, four representative materials used in the automobile structure were selected. Selected the parts to be analyzed and compared the stresses and deformation amounts according to the material under the conditions of maximum load through simplified modeling. As a result, SS41P material was used to reduce the unit cost and to achieve safety. The winch system was designed and applied for moving up and down of the farm machinery which can not be operated.

A Study on the Design and Development of the Power Transmission System for Lift Truck (지게차 전용 동력전달시스템의 설계 및 개발에 관한 연구)

  • Jang, Kyoung-Yeol;Park, Joong-Sun;Yoo, Woo-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.34-43
    • /
    • 2009
  • In this thesis, we explain developing processes of the power transmission system for lift truck. Conventional power transmission system had some problems such as spatial constraints or low speed and high torque problem. Because conventional power transmission system was mainly designed for high speed vehicles. In this paper we developed power shift drive axle specialized for $2.0{\sim}3.5$ ton lift truck. Innovative structure of transmission which is built in inside axle, enables to reduce system weight and size by 40% compared to the conventional power transmission system. Also, it is possible to do additional functions such as auto parking system and anti-roll back system.

Mathematical Programming for Air Pollution Control in Pusan (부산시 대기오염방지를 위한 수리계획법)

  • 이창효
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.229-241
    • /
    • 1996
  • This study was performed to find the most desirable emission reduction for each mobile source pollutant and the optimal control strategy at a given level of expenditures in Pusan City in 2000 by using the interactive s-constraint method developed by Chang-Hyo Lee and Hyung-Wook Kim, which isone of the mathematical programming models. The most desirable emission reduction is 7093 ton/year for particulate (TSP), 4871 ton/year for NOx, 5148 ton/year for HC and 36779 ton/year for CO. The optimal control strategy is as follows; 1. As to passenger car and taxi, limiting VKT (vehicle kilometers travelled) in congested areas will be necessary. In addition to this, improving vehicie inspection Program should be enforced. 2. As to small-gasoline bus, traffic adaptive control system will be necessary. 3. As to small-diesel bus, non-adjustable engine parameters will have to be applied. .4. As to heal bus and heart truck, catalytic trap oxidizer and limiting VKT in congested areas will do necessary. 5. As to motorcycle, 2-cycle motorcycles should be converted to 4-cycle motorcycles.

  • PDF

Space Fitting Design of LNG Fuel Tank for a Small Truck and BOG Analysis of LNG Tank

  • Minkasheva, Alena;Kwon, O-Woon;Kim, Sung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.379-386
    • /
    • 2008
  • The 36 liter LNG tank is designed to fit in the limited installation space of a small truck. Two LNG tanks allow one ton truck to run about 432 km per fueling. which is about 1.8 times longer than CNG mileage for the same truck. The variation of BOG with car acceleration for the different fuel liquid/vapor ratios in a tank is analysed by the modified Fortran program "Pro-Heatleak". Computational analyses show that the relationship between the BOG and liquid/vapor ratio is linearly proportional at a given acceleration. Fuel consumption decreases the volume of liquid fuel in the tank but increases the specific BOG. BOG increases with increasing of car acceleration when fuel liquid/vapor ratio is greater than 0.5 and decreases with increasing of car acceleration when fuel liquid/vapor ratio is less than 0.5. The difference between maximum and minimum BOG for full tank is about 12 percents. For the fuel liquid/vapor ratio equal to 0.5 BOG does not depend on car acceleration.

Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail (사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정)

  • Her, Chul haeng;Yun, Byoeng gyu;Kim, Dae wook
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

A Study on Estimation for Freight Transportation Indices on Expressway Using TCS and WIM Data (TCS 및 WIM 자료를 활용한 고속도로 물동량 지표 산정방안에 관한 연구)

  • OH, Junghwa;KIM, Hyunseung;PARK, Minseok;CHOI, Yoonhyuk;KWON, Soonmin;PARK, Dongjoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.5
    • /
    • pp.458-467
    • /
    • 2017
  • The expressway of the Korea has an important role in freight movement because 76 percent of the commodity is transported by trucks. However, there has been few indices on the role of expressways regarding freight transportation and truck traffic. The objective of this study is to propose four freight transportation related indices using ITS-related system such as TCS and HS-Wim: total truck's travel miles ($veh{\cdot}km/year$), total freight transport miles ($ton{\cdot}km/year$). efficiency of truck's travel ($veh{\cdot}km/km$), and efficiency of freight movement ($ton{\cdot}km/km$). These truck and freight related indices were estimated and compared by two different data sources: traffic volume data using VDS and OD data using TCS. These indices were designed to estimated on real time and updated every day and month.

Comparison of Vibration Characteristics at the Freight Compartment of a Truck with and without Air Spring on the Rear Axle (에어서스펜션 장착 전후의 화물트럭 적재함의 진동 특성 비교)

  • Jang, Han-Kee;Cho, Dong-Cheol;Song, Chi-Mun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.836-839
    • /
    • 2006
  • This paper presented comparison of vibration characteristics of a 5-ton truck at the two kinds of rear axle suspension, a conventional leaf spring suspension and an air spring suspension. Vibration at the selected location in the freight compartment and the rear axle were measured while the vehicle was running on various kinds of road at the specified speed. At all kinds of the driving conditions used in the test the air spring suspension showed good performance of vibration attenuation, especailly at the frequency range of under 5 Hz.

  • PDF

Speed-dependent Emission Characteristics of the Hazardous Air Pollutants from Diesel Medium-duty Trucks according to Emission Standards (배출허용기준 강화에 따른 차속별 경유 중형트럭의 유해대기오염물질 배출특성)

  • Hong, Heekyoung;Jung, Sungwoon;Son, Jihwan;Moon, Taeyoung;Lee, Sangeun;Moon, Sunhee;Yoon, Hyunjin;Kim, Jeongsoo;Kim, Jounghwa
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This study was designed to investigate the emission characteristics of unregulated pollutants (Aldehyde, VOCs, PAHs) as well as regulated pollutants (CO, HC, NOx and PM) from diesel medium-duty trucks. The emission characteristics of unregulated and regulated pollutants were assessed based on regulation standards (EURO 4 and EURO 5) and intake weight (2.5 ton and 5 ton). The results show that unregulated and regulated pollutants remained almost unchanged at higher speeds but decreased at below 23.5 km/h. Reduction in unregulated and regulated pollutants was noticeable in vehicles of recent regulation standards and light intake weight. The analysis of aldehyde using UPLC showed that formaldehyde and acetaldehyde of aldehyde were most dominant. The GC/MS analysis showed that benzene, toluene, ethylbenzene and xylene of VOCs was over 80% followed by toluene, xylene, ethylbenzene and benzene. In addition, the analysis of PAHs using GC/TOF-MS indicated that bi- and tricyclic aromatic ring of aromatic compounds was 73% and 53% at 2.5 ton and 5 ton vehicles, respectively. The results of this study will be contributed to establish HAPs inventory.