• Title/Summary/Keyword: 5G mobile network

Search Result 182, Processing Time 0.028 seconds

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper)

  • Strinati, Emilio Calvanese;Barbarossa, Sergio;Choi, Taesang;Pietrabissa, Antonio;Giuseppi, Alessandro;De Santis, Emanuele;Vidal, Josep;Becvar, Zdenek;Haustein, Thomas;Cassiau, Nicolas;Costanzo, Francesca;Kim, Junhyeong;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.643-657
    • /
    • 2020
  • Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

VoIP Performance Improvement with Packet Aggregation over MANETs (MANET에서 패킷취합을 이용한 VoIP 성능 개선)

  • Kim, Young-Dong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 2010
  • In this paper, VoIP(Voice over Internet Protocol) transmission performance for MANET(Mobile Ad-hoc Networks) is improved and analyzed with packet aggregation scheme which is aggregating some of short length packets to one large packet and sending to networks. VoIP simulator based on NS(Network Simulator)-2 is implemented and used to measure performance of VoIP traffic transmission. In this simulation, VoIP traffics are generated with parameters of some codes such as G.711, G.729A, GSM.AMR and iBLC. MOS(Mean Opinion Score), end-to-end network delay, packet loss rate and transmission bandwidth are measured. Performance improvements of 98% for MOS, 6.4times for end-to-end network delay, 32times for packet loss rate is shown as simulation results. On the other hand, transmission bandwidth is increased about maximum 10%. Finally, VoIP implementation guide for the performance with packet aggregation is suggested.

AAA System for PLMN-WLAN Internetworking

  • Janevski Toni
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.192-206
    • /
    • 2005
  • Integration of mobile networks and Internet has started with 2.5 generation of mobile cellular networks. Internet traffic is today dominant traffic type worldwide. The hanger for higher data rates needed for data traffic and new IP based services is essential in the development of future wireless networks. In such situation, even 3G with up to 2 Mbit/s has not provided data rates that are used by Internet users with fixed broadband dial-up or through wired local area networks. The solution to provide higher bit rates in wireless access network has been found in wireless LAN although initially it has been developed to extend wired LAN into wireless domain. In this paper, we propose and describe a solution created for interoperability between mobile cellular network and WLAN. The integration between two networks, cellular and WLAN, is performed on the authentication, authorization, and accounting, i.e., AAA side. For that purpose we developed WLAN access controller and WLAN AAA gateway, which provide gateway-type access control as well as charging and billing functionalities for the WLAN service. In the development process of these elements, we have considered current development stadium of all needed network entities and protocols. The provided solution provides cost-effective and easy-to-deploy PLMN-WLAN Internetworking scenario.

A History-Based Mobility Prediction Algorithm for Vertical Handover (Vertical 핸드오버를 위한 과거 이동 경로 기반의 이동성 예측 알고리즘)

  • Joe, In-Whee;Hong, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.536-541
    • /
    • 2008
  • This paper proposes a mobility prediction algorithm for the effective handover among hybrid networks. The proposed algorithm is consisted of two mechanisms to predict a mobile terminal's path. First, the mobile terminal will be checking its received signal power level. Then the mobile terminal will judge its path in some network. Second, if the mobile terminal change its path suddenly, it will be dealing with this situation appropriately using the mobile terminal's speed. This paper introduces existing researches and the proposed algorithm. Finally, our algorithm is compared with existing approaches in terms of the handover delay by using the network simulator OPNet version 10.0.

Technical problems of Li-Fi wireless network (무선 네트워크 기술 Li-Fi의 문제점)

  • Park, Hyun Uk;Kim, Hyun Ho;Lee, Hoon Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.186-188
    • /
    • 2014
  • In recent years, domestic as well as LTE wireless network of Wi-Fi and most used. In addition, mobile-intensive services that used mainly in our society makes it easier, SNS, application (APP), and file downloads. As such, the amount of data requested, while living at the time of mobile users will want to be safe from the earliest. And the wireless network communications mortality (3G, 4G (LTE), LTE-A) and Wi-Fi (802.11 n-2.4 G H z z H a c-5, 802.11 G), and users are mainly used in the death 4G (LTE), communication Wi-Fi, 802.11 n-2.4 GHz are used most frequently. As above, use the wireless network in order to safely and quickly developed the technology of the Li-Fi. Li-Fi light (visible light) technology to communicate with, and Wi-Fi (802.11 n-2.4 G z H) 100 times faster, LTE-A 66 times faster. However, the current Li-Fi to commercialise the big issue exists. In this paper, there are a lot of existing problems in the commercialization of Li-Fi being used in Wi-Fi, and a comparative analysis.

  • PDF

The Header Compression Scheme for Real-Time Multimedia Service Data in All IP Network (All IP 네트워크에서 실시간 멀티미디어 서비스 데이터를 위한 헤더 압축 기술)

  • Choi, Sang-Ho;Ho, Kwang-Chun;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.8-15
    • /
    • 2001
  • This paper remarks IETF based requirements for IP/UDP/RTP header compression issued in 3GPP2 All IP Ad Hoc Meeting and protocol stacks of the next generation mobile station. All IP Network, for real time application such as Voice over IP (VoIP) multimedia services based on 3GPP2 3G cdma2000. Frames for various protocols expected in the All IP network Mobile Station (MS) are explained with several figures including the bit-for-bit notation of header format based on IETF draft of Robust Header Compression Working Group (ROHC). Especially, this paper includes problems of IS-707 Radio Link Protocol (RLP) for header compression which will be expected to modify in All IP network MS's medium access layer to accommodate real time packet data service[1]. And also, since PPP has also many problems in header compression and mobility aspects in MS protocol stacks for 3G cdma2000 packet data network based on Mobile IP (PN-4286)[2], we introduce the problem of solution for header compression of PPP. Finally. we suggest the guidelines for All IP network MS header compression about expected protocol stacks, radio resource efficiency and performance.

  • PDF

The Security Vulnerabilities of 5G-AKA and PUF-based Security Improvement (5G 인증 및 키합의 프로토콜(5G-AKA)의 보안취약점과 PUF 기반의 보안성 향상 방안)

  • Jung, Jin Woo;Lee, Soo Jin
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • The 5G network is a next-generation converged network that combines various ICT technologies to realize the need for high speed, hyper connection and ultra low delay, and various efforts have been made to address the security vulnerabilities of the previous generation mobile networks. However, the standards released so far still have potential security vulnerabilities, such as USIM deception and replication attack, message re-transmission attack, and race-condition attack. In order to solve these security problems, this paper proposes a new 5G-AKA protocol with PUF technology, which is a physical unclonable function. The proposed PUF-based 5G-AKA improves the security vulnerabilities identified so far using the device-specific response for a specific challenge and hash function. This approach enables a strong white-list policy through the addition of inexpensive PUF circuits when utilizing 5G networks in areas where security is critical. In addition, since additional cryptographic algorithms are not applied to existing protocols, there is relatively little burden on increasing computational costs or increasing authentication parameter storage.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.