• 제목/요약/키워드: 5G Wireless

Search Result 275, Processing Time 0.026 seconds

Technical Trends of 5th Generation Wireless Backhaul (5세대 무선 백홀 기술 동향)

  • Moon, Y.J.;Lee, Y.S.;Bang, S.J.;Kim, J.W.;Moon, J.W.;Sohn, K.Y.;Lee, H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.24-32
    • /
    • 2018
  • With the advent of new convergence services, the requirements of 5G mobile communication systems are being newly derived. The 5G mobile communication system has been evolving to solve requirements that cannot be satisfied with existing 4G mobile communication systems, such as a high user experience transmission rate, short transmission delay, and high connection density. The evolution of a 5G mobile communication system to meet the new requirements is expected to be dominated by the UDN environment in which a number of small cells are concentrated. The 5G wireless backhaul system, which has advantages in terms of initial installation and operation cost, is expected to be an indispensable choice for connecting many small cells and core networks. This paper therefore looks at the frequency band characteristics and requirements applicable to 5G wireless backhaul systems that can accommodate new situations, and introduces key related technologies that can satisfy the 5G wireless backhaul requirements.. In addition, we describe the research and development trends of a 5G wireless backhaul system that is currently under development.

Planar Microstrip Patch Antenna for 5G Wireless Applications

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • This paper describes a planar microstrip patch antenna designed on dielectric substrate. Two types of planar microstrip patch antennas are studied for the 5G wireless applications, one type is conventional microstrip structure, the other type is stacked microstrip structure fed by coaxial probe. Using electromagnetically coupling method, stacked microstrip patch antenna employing a multi-layer substrate structure was designed. The results indicate that the proposed stacked microstrip patch antenna performs well at 5G wireless service bandwith a broadband from 3.42GHz to 3.70GHz. The impedance bandwidth(VSWR≤2) is 360MHz(10.28%) from 3.42GHz to 3.78GHz. In this paper, through the designing of a stacked microstrip patch antenna, we have presented the availability for 5G wireless repeater system.

5th Generation Wireless Networks Security: Challenges and Solutions

  • Siddiq, Bashayer Ahmed Bin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.157-162
    • /
    • 2022
  • In reason of the high capacity and low latency, the 5G wireless networks used nowadays in many of life applications such as: remote surgery and guiding vehicle. The high requirements of 5G networks makes it more vulnerable for security threats and attacks. This paper presents some challenges faced by 5G networks and presets some of the security solutions.

Research on the Trend in Private 5G Introduction in a Foreign Country (해외 주요국의 Private 5G 도입 동향)

  • Min, Dae Hong;Shin, Yong Hee;Ahn, Jee Young
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.139-150
    • /
    • 2020
  • Fifth-generation (5G) wireless communication supports low latency of up to 1 ms or less, 20 Gbps of data rate, and more than 1 million connections. With these technical advantages, machines and equipment can be precisely adjusted, allowing 5G to be applied to industrial applications. To expand the industrial application of 5G wireless communications, major countries have introduced dedicated 5G, allowing specific companies to build and use 5G directly. Germany, UK, and Japan allocate 100 MHz, 416 MHz, and 1,200 MHz, respectively, of bandwidth dedicated to 5G. Companies with local licenses from the government are expected to accelerate the application of 5G at a low cost and low-frequency range. Therefore, Korea should introduce private 5G to foster 5G-related industrial ecosystems and successfully implement the fourth industrial revolution.

Research Trends of Ultra-reliable and Low-latency Machine Learning-based Wireless Communication Technology (기계학습기반 초신뢰·저지연 무선통신기술 연구동향)

  • Lee, H.;Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.93-105
    • /
    • 2019
  • This study emphasizes the importance of the newly added Ultra-Reliable and Low-Latency Communications (URLLC) service as an important evolutionary step for 5G mobile communication, and proposes a remedial application. We analyze the requirements for the application of 5G mobile communication technology in high-precision vertical industries and applications, introduce the 5G URLLC design principles and standards of 3GPP, and summarize the current state of applied artificial intelligence technology in wireless communication. Additionally, we summarize the current state of research on ultra-reliable and low-latency machine learning-based wireless communication technology for application in ultra-high-precision vertical industries and applications. Furthermore, we discuss the technological direction of artificial intelligence technology for URLLC wireless communication.

An Enhanced Control Protocol Design for LADN in 5G Wireless Networks

  • Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.109-117
    • /
    • 2020
  • In this paper, we analyze LADN(Local Area Data Network) that provides high throughput, low latency and service localization for 5G wireless networks and propose an enhanced control protocol design for LADN in 5G wireless networks. The concept of LADN is newly introduced in 3GPP 5G communication system and the LADN is a data network to which the UE(User Equipment) can connect with a specific LADN session only when the UE is located in a certain service area. If the LADN information between the UE and core network is not identical, the LADN session cannot be properly established. The proposed approach promplty synchronizes the LADN information between the UE and core network by using the specific registration procedure and appropriately establishes the LADN session, when the establishment of the LADN session is failed. Consequently, the proposed enhanced control protocol design(ECP) can prevent unnecessary signalling overhead and communication delay for LADN in 5G wireless networks.

Performance Analysis on Strongest Channel Gain User for Intelligent Reflecting Surface NOMA

  • Kyuhyuk Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, fifth generation (5G) networks are being deployed in phases all over the world, the paradigm has shifted to developing the next generation wireless technologies, which have grown exponentially in last few decades, wireless networks are promising for the demand to enormous connections. Non-orthogonal multiple access (NOMA) and intelligent reflecting surface (IRS) are considered as the key technoloies for next-generation beyond 5G (B5G) and sixth generation (6G) networks, in which IRS can play an important advance in the wireless propagation environment, and NOMA can effectively increase massive connectivity to improve user fairness. In this paper, we analyze a performance on the strongest channel user in terms of achievable data rates numerically. Then, with the achievable data rates, the signal-to-noise ratio (SNR) gain is calculated for the IRS-NOMA network over the conventional NOMA network. As a consequence, IRS-NOMA schemes have been considered as some key technologies.

5GCHAMPION - Disruptive 5G Technologies for Roll-Out in 2018

  • Strinati, Emilio Calvanese;Mueck, Markus;Clemente, Antonio;Kim, Junhyeong;Noh, Gosan;Chung, Heesang;Kim, Ilgyu;Choi, Taesang;Kim, Yeongjin;Chung, Hyun Kyu;Destino, Giuseppe;Parssinen, Aarno;Chuberre, Nicolas;Vautherin, Benoit;Deleu, Thibault;Gineste, Mathieu;Korvala, Aki
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.10-25
    • /
    • 2018
  • The 5GCHAMPION Europe-Korea collaborative project provides the first fully-integrated and operational 5G prototype in 2018, in conjunction with the 2018 PyeongChang Winter Olympic Games. The corresponding technological advances comprise both an evolution and optimization of existing technological solutions and disruptive new features, which substantially outpace previous generations of technology. In this article, we focus on a subset of three disruptive technological solutions developed and experimented on by 5GCHAMPION during the 2018 PyeongChang Olympic Games: high speed communications, direct satellite-user equipment communications, and post-sale evolution of wireless equipment through software reconfiguration. Evaluating effectiveness and performing trials for these key 5G features permit us to learn about the actual maturity of 5G technology prototyping and the potential of new 5G services for vertical markets and end user enhanced experience two years before the launch of large-scale 5G services.

Technical Trends of Ultra-Reliable Low-Latency Communication for 5G (5G URLLC 기술 동향)

  • Park, O.S.;Kim, S.K.;Park, G.Y.;Shin, W.R.;Shin, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.42-50
    • /
    • 2019
  • The fifth generation (5G) wireless technology is expected to be the trigger for the fourth industrial revolution. In particular, 5G ultra reliable low latency communication (URLLC) is expected to lead the wireless automation in vertical domains. In this paper, we analyze use cases, key metrics, and physical layer technologies for 5G URLLC standardized in $3^{rd}$ Generation Partnership Project Radio Access Network (3GPP RAN). Additionally, we discuss enabling RAN technologies towards beyond 5G to support high reliability and low latency.

Access Control for D2D Systems in 5G Wireless Networks

  • Kim, Seog-Gyu;Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.103-110
    • /
    • 2021
  • In this paper, we compare two access control mechanisms for D2D(Device-to-Device) systems in 5G wireless networks and propose an effective access control for 5G D2D networks. Currently, there is no specified access control for 5G D2D networks but there can be two access control approaches for 5G D2D networks. One is the UE-to-Network Relay based access control and the other is the Remote UE(User Equipment) based access control. The former is a UE-to-Network Relay carries out the access control check for 5G D2D networks but the latter is a Remote UE performs the access control check for 5G D2D networks. Through simulation and evaluation, we finally propose the Remote UE based access control for D2D systems in 5G wireless networks. The proposed approach minimizes signalling overhead between the UE-to-Network Relay and the Remote UE and more efficiently performs the access control check, when the access control functionalities are different from the UE-to-Network Relay in 5G D2D networks.