• Title/Summary/Keyword: 5G Antenna

Search Result 153, Processing Time 0.025 seconds

Construction and Measurement of a T-DMB/GPS/Mobile Antenna for Vehicular Application (차량에 적용 가능한 T-DMB/GPS/Mobile 안테나의 제작과 측정)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper presents the design of a novel integrated T-DMB/GPS/Mobile antenna for vehicular application. The T-DMB antenna is designed with a modified meander-type microstrip patch providing linearly a polarized broadside radiation pattern. The GPS antenna is designed with an inserted slot in the patch antenna providing circularly polarized broadside radiation pattern. The Mobile (GSM, AMPS, DCS, PCS, UMTS, etc.) antenna is designed as a modified G-type patch antenna providing multi-band operation. Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed T-DMB /GPS/Mobile antenna satisfactorily matches that of the simulation results. The 2D and 3D radiation patterns and gains according to the results of the experiment are also presented and discussed.

Design of Wide-Band, High Gain Microstrip Antenna Using Parallel Dual Slot and Taper Type Feedline (평행한 이중 슬롯과 Taper형 급전선로를 이용한 광대역, 고이득 마이크로스트립 안테나의 설계)

  • Lee, Sang-Woo;Lee, Jae-Sung;Kim, Chol-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.257-264
    • /
    • 2007
  • In this paper, we have designed and fabricated a wide-band and high gain antenna which can integrate a standard of IEEE 802.1la$(5.15\sim5.25\;GHz,\;5.25\sim5.35\;GHz,\;5.725\sim5.825\;GHz)$. We inserted a parallel dual slot into a rectangular patch to have wide-band, and we offset an element of capacitance from the slot by using coaxial probe feeding method. We also designed a converter of $\lambda_g/4$ impedance with taper type line so that wide-band impedance can be matched easily. We finally designed structure with $2\times2$ array in order to improve the antenna gain, and the final fabricated antenna could have a good return loss(Return loss$\leq$-10 dB) and a high gain(over 13 dBi) at the range of $5.01\sim5.95\;GHz(B/W\doteqdot940\;MHz)$.

A triple band printed monopole antenna with a bent branch strips for WiFi / 5G (와이파이 및 5G용 굽은 가지 스트립을 가진 삼중대역 인쇄형 모노폴 안테나)

  • Min-Woo Kim;Dong-Gi Shin;Oh-Rim Ryu;Young-Soon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.536-542
    • /
    • 2021
  • In this paper, we proposed a triple band printed monopole antenna with a bent branch strips for WiFi / 5G. An antenna structure in which bent strips for generating multiple resonance are attached in the form of branches was newly proposed based on a typical monopole strip vertically erected as a triple band antenna structure. The proposed antenna is designed on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 28×40 mm2. The measured impedance bandwidth is 430 MHz (2.22~2.65 GHz) in the 2.4 GHz WLAN, 450 MHz (3.38~3.83 GHz) in the 3.5 GHz and 2390 MHz (4.95~7.34 GHz), In particular, it has been observed that antenna has a stable omnidirectional radiation patterns as well as gain of 1.537 dBi, 1.878 dBi and 2.337 dBi in the entire frequency band of interest.

Ultra Wide Area Wireless Backhaul Network System Based on Large Scale Array Antenna (대형 어레이 안테나 기반 초광역 무선 백홀망 시스템)

  • Go, SeongWon;Kim, Hyoji;Lee, Ju Yong;Cho, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1354-1362
    • /
    • 2015
  • Heterogeneous network technology is expected to be a core technology for 5G mobile communications. 5G mobile network would be composed of many base stations even have mobility, then the operator should connect base stations through the wireless backhaul technology. This paper presents Ultra Wide Area Wireless Backhaul Network System with massive array antenna. We conducted link budget analysis for Ultra Wide Area Wireless Backhaul Network and performance analysis of massive array antenna system through the transmission simulator based on beamforming technology. In wide area ($10km^2$) wireless backhaul system composed of massive antenna, we achieved 5 bps/Hz average spectral efficiency with 1 W transmission power per beam.

Verification on the Reduction Technique of Measurement Time of Total Radiated Power (TRP) by Using Effective Isotropic Radiated Power (EIRP) in 5G Frequency Band (유효등방복사전력(EIRP)을 활용한 5G 주파수 대역 총복사전력(TRP) 측정시간의 단축방안 검증)

  • Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.835-840
    • /
    • 2020
  • In this paper, we described the verification results on method by using the computer simulation and practical experiment for reduction of total radiated power (TRP) measurement time consuming tens of hours. TRP measurements are used in the 5G band in order to exactly evaluate the wireless communication equipment, but it takes a long measurement time because of dense sampling interval. Moreover, if there are various beam forming scenarios, the total measurement time increases exponentially. Therefore, the world-wide research on reduction method of the TRP measurement time is intensively on going. The verified method in this paper is to calculate the TRP through effective isotropical radiated power (EIRP). At first, the relation of TRP and EIRP was investigated, and an antenna for testing was designed and constructed. And, the amount of error was analyzed through simulation and measurement. The analysed results showed that the derived TRP through EIRP has very small error. This method could be applied for TRP measurements of 5G wireless communication equipments.

Slit Folded Type Microstrip Antenna for Omnidirectional E-plane and H-plane (전방향성 E & H면 슬릿 Folded형 마이크로스트립 패치 안테나)

  • 김종래;우종명;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.956-963
    • /
    • 2002
  • A linearly polarized folded type and H-shape slit folded type microstrip patch antenna at GPS(center frequency:1.575 GHz) were designed and fabricated by folding a conventional single $\lambda_{g}/2(\lambda_{g}:wavelength)$ rectangular patch a half along the length direction at the center of patch and inserting ground plane in the middle. As a result, two types of omnidirectional radiation patterns for E-plane (for zx-plane) in the direction of the length of patch and H-plane (for xy-plane) have been acquired. The experimental results show that the average gains of folded type and slit folded type for omnidirectional E-plane and H-plane are -1.5 dBd (-2.4 dBd) and -3.27 dBd(-2.5 dBd). Slit folded type microstrip patch antenna was more miniaturized than folded type microstrip patch antenna by 27.5 %. In case of slit folded type antenna, average gains of omnidirectional radiation pattern for E & H-plane are almost same.

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

Compact Rectangular Spiral Antenna Employing Modified Feeding Network (변형된 급전 구조를 가지는 소형 직사각형 스파이럴 안테나)

  • Lee Dong-Hyun;Kim Tae-Soo;Chun Joong-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.595-598
    • /
    • 2006
  • In this letter, a compact rectangular spiral antenna is proposed. Instead of a center excitation of conventional spiral antennas, the proposed antenna is adopted a modified feed network, feeding at the end of the spiral. The matching circuit of $'{\sqsupset}'$ shape is added at the feeding point. With this matching circuit, we can easily match the input impedance well, without the limit of the space. The parameter which determines the circular wave characteristic is explained, and the design guideline of the proposed antenna is presented. We design a proposed antenna operating at 9.5 GHz. Its size is only $0.6\lambda_g\times0.6\lambda_g$. The simulated bandwidth of the input impedance $(S11\leq-10)$ is 8.12% and that of $(AR\leq-3)$ is 4.62%, which is excellent characteristics as compared to its simple structure.

  • PDF

Design of Ka-band Planar Active Phased Array Antenna (Ka밴드 평면형 능동위상배열 안테나장치 설계)

  • Han, Jae-Seob;Kim, Young-Wan;Baek, Jong-Gyun;Kim, Jong-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, we described the design of Ka-band planar active phased array antenna which is applicable for small RADAR for airborne and seeker of guided missile. The antenna consists of about 1000 array radiating elements and is designed to be within 200mm diameter. We optimized the spacing of radiating elements to allow beem steering above ${\pm}55$ degrees of Field of view, and analyzed the performance of antenna. We confirmed that the Effective Isotropic Radiated Power (EIRP) of the antenna can be 94.22 dBm and receive G/T can be 1.68 dB/k through the designs of RF components and the verification of RF budget. The TX output of TR Module is designed to be over 1.3W for EIRP, and Receive noise figure of TR Module is designed to be less than 5dB for G/T.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.