• Title/Summary/Keyword: 5083-Al alloy

Search Result 104, Processing Time 0.026 seconds

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

A Study on the resistance of surface hardening treated Aluminum, Titanium alloy under the high velocity impact (표면 경화 처리된 Al, Ti의 고속 충격 저항성에 관한 연구)

  • 손세원;김희재;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.852-855
    • /
    • 2002
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of surface hardening treated Aluminum, Titanium alloy laminates, ballistic tests were conducted. In this paper, Anodized Al 5083-H131 alloy laminates and nitrified Ti (Gr.2) alloy laminates were used to achieve higher surface hardness. Surface hardness test were conducted using a Micro victor's hardness tester and thickness of surface hardening treated specimens was measured by video microscope. Resistance to penetration is determined by the protection ballistic limit($V_50$), a statistical velocity with 50% probability far complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_50$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_50$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests.

  • PDF

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

Effects of Metalized Al-2%Zn Layer on the Corrosion Behavior of Al 5083 Alloy (Al 5083 합금의 부식거동에 미치는 Al-2%Zn 용사 코팅층의 영향)

  • 김용철;김영근;이성민;고영태
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.05a
    • /
    • pp.2-2
    • /
    • 1999
  • 금속재료의 표면 특성을 높이기 위해서 여러 표면처리 방법들이 사용되어져 오고 있다. 그 중 용사법에 의한 코팅방법이 최근의 현저한 기술적인 진보와 새로운 용사재료의 개발 등에 의해 여러 분야에 널리 응흉되고 있다. 일반적으로 이 용사법에 의한 코팅층은 다리, 선박 등의 대형 구조물에 대한 내식성 향상뿐만 아니라 자동차 및 항공기 부품, 핵 반응기 등의 코팅부에 널리 이용되고 였다. 특히 해수분위기에서 주로 사용되는 설비의 내식성을 향상시킬 목적으로 사용되 는 알루마늄 및 아연 합금의 용사 코팅층은 대부분의 경우 건조한 분위기보다는 수분이 많은 수용액 환경 하에서 사용되므로, 사용 환경 중에서 용사피막의 내식성을 조사하는 연구가 요구되고 있다. 사용되는 환경하에서의 침지시험에 의한 방법도 중요하지만, 가속화된 전기화학측정에 의한 방법 또한 이용된다. 열용사법에 의한 코팅층의 전기화학적 특성을 알아보기 위해서 3.5 % NaCI 수용액 내에서 AI 5 5083 모재와 Al-2%Zn 합금의 용사 코팅층 각각에 대한, 그리고 AI 5083 모재 위 AI-2%Zn 용사층이 코팅된 경우에 대한 분극거동과 침지시간에 따른 부식전위 및 분극저항성의 특성변화, 표면의 임피던스특성 변화 등을 측정하였다. 이 결과 모재에 대한 코팅층의 희생양극성올 판단할 수 있고, 모재/코팅 사스템의 분극거동은 혼성전위이론(mixed-potential theory)에 의해 결정되었다. 용사 코팅층이 박리되어 모재가 일부 드러난 경우를 모사한 시험편올 제작하고, 시험편 표면의 각 위치에 따라 부식전위 분포를 측정하였다. 그리고 측정 데이터를 기초로 표면의 상태변화를 모사하여 용사코팅에 의한 표면에서의 방식전위분포를 시율레이션하였다. 이와 같은 표면에서의 방식전위분포 해석을 통하여, 코팅층의 희생양극성에 의한 모재의 방식범위를 판단할 수 있다.의 비저 항을 갖는 철 박막에서도 99.9% 순도의 철을 타켓으로 하여 증착된 막은 일반 저탄소 강을 타켓으로 하여 증착된 막보다 훨씬 낮은 부식속도를 보였다.TEX>$He/O_2/Ar/N_2$의 gas를 사용 한 atmospheric pressure plasma cleaning 과 $Ar/O_2$의 gas를 사용한 ICP cleaning에서 이 차전자방출계수(SEEC)가 약 1.5~2.5배 증가된 것을 알 수 있었다. 저지능 등을 평가하여 각 실험결과를 비교분석하여 보았다. 수록 민감하여 304 의 IGSCC 와 매우 유사한 거동을 보인다. 본 강연에서는 304 와 600 의 고온 물에서 일어나는 IGSCC 민감도에 미치는 환경, 예민화처리, 합금원소의 영향을 고찰하고 이에 대한 최근의 연구 동향과 방식 방법을 다룬다.다.의 목적과 지식)보다 미학적 경험에 주는 영향이 큰 것으로 나타났으며, 모든 사람들에게 비슷한 미학적 경험을 발생시키는 것 이 밝혀졌다. 다시 말하면 모든 사람들은 그들의 문화적인 국적과 사회적 인 직업의 차이, 목적의 차이, 또한 환경의 의미의 차이에 상관없이 아름다 운 경관(High-beauty landscape)을 주거지나 나들이 장소로서 선호했으며, 아름답다고 평가했다. 반면에, 사람들이 갖고 있는 문화의 차이, 직업의 차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도 $\ulcorner$순응$\lrcorne

  • PDF

A Study on the Formation of Functionally Composite Layer on Al Alloy Surface by Plasma Transferred Arc Overlaying Process (Plasma Transferred Arc 오버레이법에 의한 Al 합금 표면층의 복합기능화에 관한 연구)

  • 임병수;황선효;서창제
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.107-115
    • /
    • 1999
  • The objective of this research was to study the formation of the thick hardened layer with the addition of metal powder(Cu) and ceramics powders(TiC) on the aluminum 5083 alloys by plasma transferred arc process(PTA process) and to characterize the effect of overlaying conditions on the overlaid layer formation. This was followed by investigating the microstructures of the overlaid layers and mechanical properties such as hardness and wear resistance. The overlaid layer containing copper powder was alloyed and intermetallic compound($CuAl_2$) was formed. The overlaid layers with high melting point TiC powders, however, did not react with base metal. Wear resistance of the alloyed layer was remarkably improved by the formation of $CuAl_2$, precipitate phase, which prevented wear of base aluminum alloys and at higher wear speed, accelerated sliding of the counter part. Wear resistance of the composite layer was also remarkably improved because TiC powder act as a load barring element and Fe debris fragments detached from the counter part act as a solid lubricant on the contact surface.

  • PDF

Formation of Thicker hard Alloy Layer on Aluminum Alloy by PTA Overlaying with Metal Powders (플라스마 아크 紛體肉盛法에 의한 Al 合金의 硬化厚膜 合金化層의 形成)

  • ;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Effect of Si metal powders addition with the plasma transferred arc(PTA) overlaying process on characteristics of the alloyed layer in aluminum alloy(A5083) has been investigated. The overlaying conditions were 175-250A in plasma arc current, 500mm/min in travel speed, the 5-20g/min in powder feeding rate. Main results obtained are summarized as follows. 1)Sufficient size of molten pool on surface of base metal was required for forming an alloyed layer; in a fixed travel, the formation of alloyed layer with clear and beautiful surface depend upon the plasma arc current and powder feeding rate; the greater plasma arc current and the smaller powder feeding rate were, the better bead was formed. Optimum alloyed conditions by which an excellent alloyed bead obtained was 225A in plasma arc current. PTA process made it possible to form an alloyed layer with up to 67wt% Si. 2)Microstructure in the alloyed layer was in accord with prediction from the Al-Si phase diagram 3)The hardness of the alloyed layer increased in proportion to Si content. 4)As volume fraction of primary Si increased, the specific wearness of the alloyed layer was significantly improved. However, no further improvement was found when the volume fraction was greater than about 30%. 5)Utilizing the PTA process, a crack free alloyed layer with maximum hardness of about Hv 310 could be obtained.

  • PDF

Fatigue Strength Assessment of High Manganese Steel for LNG CCS (LNG CCS적용을 위한 고망간강의 극저온 피로성능 평가)

  • Lee, Jin-Sung;Kim, Kyung-Su;Kim, Yooil;Yu, Chang-Hyuk;Park, Jooil;Kang, Bong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.246-253
    • /
    • 2014
  • Liquid natural gas is stored and transported inside cargo tank which is made of specially designed cryogenic materials such as 9% Ni steel, Al5083-O alloy and SUS304 and so on. The materials have to keep excellent ductile characteristics under the cryogenic environment, down to -163oC, in order to avoid the catastrophic sudden brittle fracture during the operation condition. High manganese steel is considered to be the promising alternative material that can replace the commonly used materials mentioned above owing to its cost effectiveness. In line with this industrial need, the mechanical properties of the high manganese steel under both room and cryogenic environment were investigated in this study focused on its tensile and fatigue behavior. In terms of the tensile strength, the ultimate tensile strength of the base material of the high manganese steel was comparable to the existing cryogenic materials, but it turned out to be undermatched one when welding is involved in. The fatigue strength of the high manganese steel under room temperature was as good as other cryogenic materials, but under cryogenic environment, slightly less than others though better than Al 5083-O alloy.

Effect of Anodizing Current Density on Anti-Corrosion Characteristics for Al2O3 Oxide Film (Al2O3 산화 피막의 내식성에 미치는 양극산화 전류밀도의 영향)

  • Lee, Seung-Jun;Jang, Seok-Gi;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.153-153
    • /
    • 2016
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the sea water upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Afterward, the irregular oxide film that was created in the first step surface modification was removed. For the second step surface modification process (identical to the step 1), etching was performed using mixture of chromic acid (1.8 wt.%) and phosphoric acid (6 wt.%) at $60^{\circ}C$ temperature for 30 minutes. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification presented a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

The Effect of Strength by Changing Tool Shape in the Friction Stir Welding (마찰교반용접에서 툴의 형상이 접합부 강도에 미치는 영향에 관한 연구)

  • Chun, Chang-Keun;Kim, Hyeong-Ju;Park, In-Gyu;Umm, Kyung-Su;Chang, Woong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1613-1617
    • /
    • 2009
  • As demand regarding a recent energy-saving rises, the using ratio of the aluminum plate in manufacturing of a railroad vehicle has been increasing. The aluminum structure to be applied to a railroad vehicle is divided to single skin and double skin, and the main aluminum product is mainly Al 6005 extrude and Al 5083 rolled in domestic market. The Al 6005 alloy is applied heat treatment in order to improve the strength of material. Therefore there is the disadvantage that the strength of welding zone decreases compare with base material's if you apply to fusion welding like MIG(metal inert gas) welding. In this paper we tried to apply friction stir welding to solve these problems. In this study we investigated how tensile strength and fatigue strength were changed in case of changing the shoulder diameter of thread tool.

  • PDF

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF