• Title/Summary/Keyword: 500MW Thermal Power Plant

Search Result 35, Processing Time 0.04 seconds

Education Contents Development that Use Thermoelectric Power Plant Generation Facility Third Dimensional Model (3차원 모델을 활용한 발전설비 교육컨텐츠 개발)

  • Kim, Seok-B.;Back, Nam-H.;Son, Kwang-S.;Kim, Joo-Seok;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.362-368
    • /
    • 2008
  • The purpose of this is providing employees who take charge of operation and maintenance at power plant with education contents that can be used for self-studying and on the job training through their computers. We developed the education contents for making actually application possible using this piping and instrument diagram(P&ID), operation and maintenance procedure, unit specification and material of 500MW thermal power plant those include unit equipment 3-dimension animation, character and narration performance considering making teaching plan, flexibility, extension, reuse, maintenance and focusing on user. Specially, we developed the flash type education contents about power plant operation based on the plant 3-dimension animation and the spot real picture concerned about new generation trend for power plant incoming employees actual knowledge. in addition, this contents apparently contributed to improve the level of employees technical power as distributed to employees.

  • PDF

Simulation and Data Sampling Modelling for 1000MW Boiler Process (1000MW 보일러 프로세스의 모델링과 데이터 추출 및 시뮬레이션)

  • Park, Doo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.301-302
    • /
    • 2007
  • Maximum power consumption was up to 6,228kW in the summer of 2007 due to steady development of industry as well as increased demand of individual. Twenty fossil-Fired Thermal Power Plant for 500MW were underconstructed at present. KEPRI(Korea Electric Power Research Institute) manage 'Development of Advanced Fossil-Fired Thermal Power Generation System' project to construct high efficient power plant of 1000MW capacity for preparing increased demand of power. Design of control logic and data sampling were explained and high efficient control logic was simulated in detail in 'The Development of Next Generation Power Plant Instrument and Control System'(sub-project of 'Development of Advanced Fossil-Fired Thermal Power Generation System' project).

  • PDF

Failure Analysis on High Pressure Steam Piping of 500 MW Thermal Power Plant (500 MW 화력발전소 고압 증기 배관 손상 원인 분석)

  • Kim, Jeongmyun;Jeong, Namgeun;Yang, Kyeonghyun;Park, Mingyu;Lee, Jaehong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The 500 MW Korean standard coal-fired power plant is the largest standardized power plant in Korea and has played a pivotal role in domestic power generation for over 20 years. In addition to the aging degradation due to long term operation, the probability of failure of power generation facilities is increasing due to frequent startup and stop caused by the lower utilization rate due to air pollution problem caused by coal-fired power plants. Among them, steam piping plays an important role in transferring high-temperature & pressure steam produced in a boiler to turbine for power generation. In recent years, failure of steam piping of large coal-fired power plant has frequently occurred. Therefore, in this study, failure analysis of high pressure piping weld was conducted. We identify the damage caused by high stress due to abnormal supporting structure of the piping and suggest improved supporting structure to eliminate high stress through microstructure analysis and piping stress analysis to prevent the occurrence of the similar failure of other power plant in the case of repetitive damage to the main steam piping system of the 500 MW Korean standard coal-fired power plant.

Study of the Environment Priority Facility Operation Concept of 500MW Standard Coal Thermal Power Plant (500MW 표준석탄화력발전소의 환경안전우선 설비운영개념 도입방안 고찰)

  • Lee, Kab-Ju;Chung, Jin-Do;Kim, San
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In korea, 500MW standard coal fired power plants were designed and operated for the initial base load, so facility stability was prioritized from facility problem to treatment, but now we needed to research for minimizing greehouse gas emissions at the operation of coal fired power plants. research on various facilities and technologies was actively conducted to reduce environment pollutants was drastically reduced, but research and attempts on coping measures in the event of a reduction facility problem were in sufficient. this study considered investigated ways to minimized pollutants by quickly responding to logic development and application of the load runback concept in case of serious problems with environmental pollutant reduction facilities such as NOx reduction selective catalytic reduction facilities, SOx reduction wet flue gas desulpherisation facilities, and TSP(Total Suspended Particles) collection low temperature electric precipitator.

Study on vibration characteristics of low pressure turbine hood resonance in a 500MW thermal power plant (500MW 화력발전소 저압터빈 Hood 공진 특성에 관한 연구)

  • Cho, Cheul-Whan;Cho, Seong-Tae;Koo, Jae-Raeyang;Kim, Hyoung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.23-27
    • /
    • 2013
  • In this research paper, we study on how to decrease the high vibration of turbine hood casings which are main facilities of power generation industry. Cause of Standard coal-fired power 500MW facilities turbine hoods' high vibration is that Natural frequency of hood casing designed in near domain frequency, when they are making hoods. We investigate to reduce high vibration at hood casing. We use FEM method to found how to avoid resonance, and test to confirm that our FEM result. We Finally attach minium mass plate at hood casing to avoid resonance and high vibration reduce lower $100{\mu}m$.

Evaluation of the High Temperature Degradation of the Rotor of a 500 MW Tandem Steam Turbine (500 MW급 텐덤형 스팀 터빈 로터의 고온 열화평가)

  • Ku, Dae-Hwan;Yoo, Ho-Sun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • The metallographic examination and hardness measurements were conducted for the rotor of the 500 MW tandem steam turbine of Unit 4 in Dangjin Thermal Power Plants at the locations of steam inlet where the high temperature steams pass; high and intermediate pressure turbines. Creep cavity and degradation levels of optical micrographs of them are observed. The remaining life time of 201,523h for the rotor of the 500 MW tandem steam turbine of Unit 4 in Dangjin Thermal Power Plants was determined by the results of the inspection.

  • PDF

Development of Control Logic for Operation of Fan Stall Warning Equipment Used in Coal-Thermal Power Plant (석탄 화력발전소 송풍기 맥동감시장치 운전을 위한 제어로직 개발)

  • Roh, Yong-Gi;Cho, Hyun-Seob;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.837-846
    • /
    • 2006
  • In this paper, axial flow fans which applied at coal-thermal power plant(500[MW]) cause a unique phenomenon called 'Stall' under normal operation and this causes abnormal operation and damages the blades. In order to prevent these abnormal operation, this study estimates the reliability of new system which is applying control logic on each parameter with existing black-box-type by field test.

  • PDF

A Study on Turbine Bypass System in a 500MW Rated Coal Fired Supercritical Thermal Power Plant with Sliding Pressure Operation (변압운전 방식의 500MW 초임계압 석탄 화력발전소 터빈 우회계통에 제어에 관한 고찰)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1663-1664
    • /
    • 2008
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operations and of drum type steam generators with circulation type boilers. But, nowadays almost all of them were of high efficiency, of supercritical pressure, of big capacity, of sliding pressure operations, and of once through type steam generators. Presently built once through boilers introduce turbine bypass systems to variable pressure operation which eliminates unexpected materials in boiler tube during startup, minimizes fuel loss by short startup period and eventually improve both total efficiency and power system stability.

  • PDF

Load Following Operation Improvement by Governor Control Logic Modification of Thermal Power Plant (System Frequency Drop Prevention) (기력발전소 터빈조속기 제어로직 개선에 의한 발전기 부하추종성 향상 (계통주파수저하방지))

  • Lee, Jong-Ha;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.302-306
    • /
    • 2006
  • The improvement of load following operation of the thermal power plant is influenced to the electrical quality. Analysis of boiler, turbine, and governor system, and the study of control algorithm are necessarily preceded. The thermal power plant is operated by various control systems. In the case of faulty governor system, it takes long days to solve the problem and impossible to repair the mechanism without outage. A non-planned outage is taken into consideration because of economical power production. The paper introduces the followings; In case of system-frequency drop during long term, at 500MW thermal power plant, the generator output was drop. To clear this problem, the control logic is modified with analysis of trend and control algorithm. As a result system frequency drop is prevented during the long tenn and the electric grid operation is improved.

Thermoeconomic Analysis of Power Plants with Integrated Exergy Stream (통합적 엑서지에 의한 발전 플랜트의 열경제학적 해석)

  • Kim, D.;Lee, H.;Kwak, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.871-878
    • /
    • 2000
  • Exergetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy stream of matter into thermal and mechanical exergies. The calculated costs of electricity are almost same within 0.5% as those obtained by the thermoeconomic method with decomposition of exergy into thermal and mechanical exergies of the combined cycle plant. However for the gas-turbine cogeneration plant having different kinds of products. the difference in the unit costs of products, obtained from the two methodologies is about 2%. Such outcome indicates that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously.

  • PDF