• Title/Summary/Keyword: 5.56mm Rifle

Search Result 13, Processing Time 0.024 seconds

Reliability Analysis Using Field-Data of 5.56 mm Rifle (야전운용제원을 이용한 5.56 mm 소총 신뢰도 분석)

  • Shin, Tae-Sung;Seo, Hyun-Soo;Lee, Ho-Jun;Choi, Si-Young;Gil, Hyeon-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.584-591
    • /
    • 2020
  • Reliability is an important factor in weapons systems. Low reliability causes the weapons system to fail to function properly, which directly leads to the weakening of combat capability. This paper classifies the structure of the 5.56 mm rifle, which is currently used by the Korean army, into a total of seven assemblies and describes the eight functions necessary for the rifle to operate normally. In addition, the concept of reliability was defined as the MRBF, and the Poisson process model and TTT plot were explained as a reliability analysis theory for the repair function system. Next, the field-data obtained by defining failure as the replacement of parts other than periodic exchange of parts were refined, and the reliability was analyzed by entering the refined field operation specifications into the Minitab program. As a result, the reliability of the rifle was determined to be 251.73. The assembly parts that required improvement was identified as the barrel, lower body, and butt stock assembly, and 10 detailed parts needed to be improved. Finally, the limits of the reliability analysis using the field-data currently available for small caliber firearms were considered.

Study on Surface Treatment and Test over the Barrel of Small Arms (개인화기 총열 표면처리 및 시험에 관한 연구)

  • Chae, Je-Wook;Kim, In-Woo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.722-727
    • /
    • 2004
  • This paper includes the comparative study between Cr plating and nitriding process with an aim at improving corrosion, wear and maintainability for KNR(Korean Next Generation Rifle) 5.56mm barrel. The endurance test was conducted to compare the performance of standard barrel, Cr plating barrel and nitriding barrel. Main activities are described as follows; optimal Cr plating and nitriding process set-up for KNR 5.56mm barrel; durability test of each barrel(20,000 rounds); salt water immersion test; dispersion, initial velocity, inner diameter data acquisition. According to the results of this firing test, Cr plating barrel is superior to standard barrel and nitriding barrel in view of corrosion, wear and maintainability

  • PDF

A Study on K2 Rifle Recoil Measurement and Analysis for Virtual Reality Marksmanship (가상현실 사격훈련을 위한 탄종별 K2 소화기의 주퇴산출 및 분석 연구)

  • Kim, Jong-Hwan;Jin, Youngho;Kwak, Yunki
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.13-27
    • /
    • 2020
  • Purpose: The purpose of this study is to present a recoil measurement and analysis of K2 rifle for the development of a virtual reality marksmanship training in the Republic of Korea Army. Methods: For the recoil measurement, a test-bed is built by a barrel that has exact dimensions of K2 rifle and three piezoelectric pressure sensors mounted on the barrel. Data of over 200 rounds of 5.56mm M193 and K100 bullets are collected and analyzed from live fire experiments. For the recoil analysis, both the free recoil method and the gas exhaust aftereffect method are used to calculate a recoil velocity, momentum and kinetic energy of K2 rifle by applying the law of conservation of momentum. In addition, a new method is proposed that uses the third law of motion and the chamber pressure model for the recoil measurement Results: The results show how different between the previous and proposed methods with respect to M193 and K100 bullets of K2 rifle. In M193, the free recoil method demonstrates 1.113, 4.197, and 2.335, the gas exhaust aftereffect method computes 1.698, 6.407, and 5.441, and the proposed method calculates 0.990, 3.734, and 1.848 in recoil velocity, momentum and kinetic energy, respectively. In K100, the free recoil method demonstrates 1.190, 4.487, and 2.669, the gas exhaust aftereffect method computes 1.776, 6.699, and 5.949, and the proposed method calculates 1.060, 3.998, and 2.119 in recoil velocity, momentum and kinetic energy, respectively. Conclusion: This study implements live fire experiments to provide recoil velocity, momentum, and kinetic energy of K2 rifle using both M193 and K100 bullets. For the development of the army virtual reality marksmanship, the results in this paper would be useful to design and produce a gun and/or a rifle of virtual reality.

Study on Surface Treatment over the Barrel of Small Arms (소구경 총열 표면처리에 관한 연구)

  • 채제욱;김인우;이영신
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • This paper includes the comparative study between Cr plating and nitriding process with an aim at improving corrosion, wear and maintainability for KNR(Korean Next Generation Rifle) 5.5mm barrel. The endurance test was conducted to compare the performance of standard barrel, Cr plating barrel and nitriding barrel. Main activities are described as follows; optimal Cr plating and nitriding process set-up for KNR 5.56mm barrel; durability test of each barrel(20,000 rounds); salt water immersion test; dispersion, initial velocity, inner diameter data acquisition. According to the results of this firing test, Cr plating barrel is superior to standard barrel and nitriding barrel in view of corrosion, wear and maintainability.

Study on Operating Limits of 5.56mm Rifle Overheat - Focusing on Human Engineering (5.56mm 소총 과열에 의한 운용한계 분석 - 인간공학 중심으로)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.49-56
    • /
    • 2020
  • High temperature heat generated during rifle firing not only degrades the performance of the weapon, but also limits the user's operation. In this study, temperature change of handguard according to firing was measured with reference to Human Engineering criteria and the operability according to material was examined. Accordingly, for the firing test, three types of Korean rifle and one overseas model were selected for each material of handguard, and firing test was conducted using a contact type temperature meter. The test result shows that using a plastic handguard with low thermal conductivity and aluminum handguard with high thermal conductivity enabled the rifles to be operated with bare hands even when firing at more than 100 rounds at low atmospheric temperature. However, when firing more than 60 rounds at over 20℃ atmospheric temperature, aluminum handguard use is limited. When firing quickly over 100 rounds, handguard use is restricted regardless of its fabrication material. To eliminate operational limitations by overheating, it is necessary to eliminate direct contact with skin using gloves, vertical grips, etc. This study examined the operability of rifles in terms of thermal risk, and the resulting study results are expected to be used as basic data for Human Engineering of other rifles and munitions.

Filing Experiments and Structural Analysis of Human Body (사격시험 및 인체구조해석)

  • Lee, Se-Hoon;Choi, Young-Jin;Choi, Eui-Jung;Chae, Je-Wook;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.764-776
    • /
    • 2007
  • On the human-rifle system, the human body is affected by the firing impact. The firing impact will reduce the firing accuracy and change the initial shooting posture. Therefore the study of biomechanical characteristics using human-rifle modeling and numerical investigation is needed. The musculoskeletal model is developed by finite element method using beam and spar elements. In this study structural analysis has been performed in order to investigate the human body impact by firing of 5.56mm small caliber machine gun. The firing experiments with the standing shooting postures were performed to verify analytical results. The result if this study shows analytical displacements of the human-rifle system and experimental displacements of the real firing. As the results, the analytical displacement and stress of human body are presented.

Gaussian Mixture based K2 Rifle Chamber Pressure Modeling of M193 and K100 Bullets (가우시안 혼합모델 기반 탄종별 K2 소화기의 약실압력 모델링)

  • Kim, Jong-Hwan;Lee, Byounghwak;Kim, Kyoungmin;Shin, Kyuyong;Lee, Wonwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • This paper presents a chamber pressure model development of K2 rifle by applying Gaussian mixture model. In order to materialize a real recoil force of a virtual reality shooting rifle in military combat training, the chamber pressure which is one of major components of the recoil force needs to be investigated and modeled. Over 200,000 data of the chamber pressure were collected by implementing live fire experiments with both K100 and M193 of 5.56 mm bullets. Gaussian mixture method was also applied to create a mathematical model that satisfies nonlinear, asymmetry, and deviations of the chamber pressure which is caused by irregular characteristics of propellant combustion. In addition, Polynomial and Fourier Regression were used for comparison of results, and the sum of squared errors, the coefficient of determination and root-mean-square errors were analyzed for performance measurement.

A Study on the Pressure-travel Curve of 5.56mm Rifle Obtained from the Empirical Base Pressure Factor (탄저압력계수를 이용한 5.56mm 소총의 압력-이동거리 곡선 산출)

  • Lee, Sang-Kil;Lee, Gang-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.208-216
    • /
    • 2007
  • As the propellant mass is being accelerated out of the gun chamber along with the projectile, a continuous pressure gradient exists between the end of chamber and the base of the projectile. For this reason, the base pressure-travel curve is very important to design a conventional gun barrel in the interior ballistics, but it is not obtained briefly by empirical or theoretical method. In this paper, a simple relation between chamber pressure and base pressure was determined by the factor of base pressure(Cb) obtained from the experimental method. The simple relation gives a reasonable prediction for the reduction of pressure between the breech and the base of projectile owing to the axial gradient in the gun tube. The predictions have been validated by the infrared screen sensor and the PRODAS(PROjectile Design and Analysis System) for interior ballistic systems. Therefore, the base pressure-travel curve could be calculated from the chamber pressure measured by piezoelectric sensor. The base pressure-travel curve obtained from the simple relation offers initial information to gun barrel designer and is used for calculation of muzzle velocity.

Analysis of rifle and pistol primer gunshot residue using SEM-EDX (SEM-EDX에 의한 소총과 권총의 뇌관화약잔사 분석)

  • Jeon, Chung-Hyun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.322-329
    • /
    • 2010
  • Primer gunsot residues (GSR) obtained from K1A and K2 rifles, and K5 pistol were analysed with scanning electron microscopy/energy dispersive X-ray spectrometry (SEM-EDX) as basic data in firearm accidents. Ammunition of 5.56 mm is employed for K1A and K2 rifles and 9.0 mm for a K5 pistol. The analyses of morphology, size, particle number, elemental ratio were performed for primer GSR prepared after shooting 3 times. The detected content was Ba>Pb>Sb in most GSR particles but Sb>Pb>Ba or Pb>Sb>Ba in some particles. In the statistical result of composition ratio of elements, the particles with more Sb than Ba were detected in most primer GSR from a K5 pistol, 3~8 times more than K1A and K2 rifles. This results can be employed to discriminate gun type between rifles and pistols. Furthermore, the size and the number of particles can be applied to access the type of guns.

A Experimental Comparison Analysis for the Characteristics of Impulse Noise Caused by Shooting of Small Arms (소구경 화기의 사격음 특성에 대한 비교분석 연구)

  • Park, Mi-You;Shim, Cheul-Bo;Hong, JunSeok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.578-583
    • /
    • 2016
  • In order to provide a basis data for design of small arms and their silencer, an experimental study on firing noise of small arms was performed around the muzzle of a gun. For this experimental comparison analysis, the target small arms were included most operating small arms in our country. The sound pressure levels were measured at a certain distance which was predetermined according to US army firing test procedure, TOP 3-2-045. By this experimental study, the sound pressure levels of 5.56 mm caliber small arms are 143 dB ~ 145.4 dB and 7.62 mm caliber small arms are 144 dB ~ 145.2 dB. Between the heavy machine gun K12 and M60, the sound pressure level of K12 is slightly lower than M60.Also silencer for K14 snifer rifle was tested. Using this result, it has been found that the reduction effect of the silencer is 15.4 dB but the improvements of silencer performance in the high frequency range have to be studied later on.