• 제목/요약/키워드: 5.56 ball projectile

검색결과 11건 처리시간 0.023초

저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구 (A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact)

  • 손세원;이두성;홍성희;김영태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF

고속충격에 의한 A1 5052-H34 합금의 관통거동에 관한 연구 (A Study on perforation behavior of Aluminum 5052-H34 alloy by high velocity impact)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.174-179
    • /
    • 2001
  • In order to investigate the fracture behaviors(perforation modes) and resistance to perforation during ballistic impact of aluminum alloy plate, ballistic tests were conducted. Depth of penetration experiments with 5.56mm-diameter ball projectile launched into 25mm-thickness Al 5052-H34 targets were conducted. A powder gun launched the 3.55g projectiles at striking velocities between 0.6 and 1.0 km/s. radiography of the damaged targets showed different penetration modes as striking velocities increased. Resistance to perforation is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete perforation. Fracture behaviors and ballistic tolerance, described by perforation modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete perforation during PTP tests. The effect of various impact velocity are studied with depth of penetration.

  • PDF

고속충격시 볼탄에 의한 알루미늄 합금의 관통 깊이와 형상에 관한 실험적 연구 (The experimental investigation for penetration depth and shape of aluminum alloy plates by 5.56mm ball projectile with striking velocities between 350 and 750㎧)

  • 손세원;김희재;김영태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.800-803
    • /
    • 2002
  • This investigation describes and analyses the experimental results proper to the penetration of Al5052-H34 alloy plates of thickness 6, 12 and 16mm(T/D=1, 2, 3) by 5.56mm ball projectiles over the velocity range 350-750㎧. All the high velocity impact tests were carried out at normal impact angle, i.e. zero obliquity. The experimental results presented the variation of depth of penetration, bulge height and diameter, plugged length and diameter with the velocity fur tests on each plate of a given thickness in order to determine the deformation shapes of 5.56mm ball projectiles and targets. Also the protection ballistic limit($V_50$) tests were conducted.

  • PDF

고속충격을 받는 Ti/Al 적층재의 파괴거동에 관한 연구 (A study on the fracture behavior of Ti/Al laminates under high velocity impact)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.267-272
    • /
    • 2003
  • In order to investigate the effect of face material on Ti/Al alloy laminates under high velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by protection ballistic limit($V_{50}$), a statistical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with $0^{\circ}$obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes which face material was Titanium alloy, were compared to those which face material was anodized Al alloy after cold-rolling.

  • PDF

표면 경화 처리된 Al, Ti의 고속 충격 저항성에 관한 연구 (A Study on the resistance of surface hardening treated Aluminum, Titanium alloy under the high velocity impact)

  • 손세원;김희재;홍성희;김영태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.852-855
    • /
    • 2002
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of surface hardening treated Aluminum, Titanium alloy laminates, ballistic tests were conducted. In this paper, Anodized Al 5083-H131 alloy laminates and nitrified Ti (Gr.2) alloy laminates were used to achieve higher surface hardness. Surface hardness test were conducted using a Micro victor's hardness tester and thickness of surface hardening treated specimens was measured by video microscope. Resistance to penetration is determined by the protection ballistic limit($V_50$), a statistical velocity with 50% probability far complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_50$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_50$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests.

  • PDF

고속충격을 받는 표면처리된 알루미늄 합금의 거동에 관한 연구 (A Study on the fracture behavior of surface hardening treated aluminum alloy under the high velocity impact)

  • 손세원;김희재;황도연;홍성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.784-789
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and the resistance to penetration during ballistic impact of cold-rolled Al 5052 H34 alloy laminates, anodized Al 5052 H34 alloy laminates, and Al 5052 H34 alloy after cold-rolling, ballistic testing was conducted. In general, superior armor material is brittle materials which have a high hardness. Ballistic resistance of these materials was measured by protection ballistic limit(V50), a statical velocity with 50% probability for incomplete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are observed respectfully, resulting from V50 test and Projectile Through Plate(PTP) test at velocities greater than V50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V50 tests with 0$^{\circ}$obliquity at room temperature were also conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of Al 5052 H34 alloy laminates compared to those of cold-rolled Al 5052 H34 alloy laminates and anodized Al 5052 H34 alloy laminates anodized Al 5052 H34 alloy after cold-rolling.

  • PDF

알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구 (A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates)

  • 손세원;김희재;박영의;홍성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

PVD처리한 티타늄 합금의 고속충격 거동에 관한 연구 (A Study on the high velocity impact behavior of titanium alloy by PVD method)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.567-572
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of Titanium alloy laminates and nitrified Titanium alloy laminates which were treated by PVD(Physical Vapor Deposition) method, ballistic tests were conducted. Evaporation, sputtering, and ion plating are three kinds of PVD method. In this research, Ion plating was used to achieve higher surface hardness and surface hardness test were conducted using a Micro vicker's hardness tester. Resistance to penetration is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ test with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Titanium alloy laminates are compared to those of nitrified Titanium alloy laminates.

  • PDF

표면처리가 장갑재료의 방호한계에 미치는 영향 (An Effect of surface treatment on a Protection Ballistic Limits in armor material)

  • 손세원;김희재;이두성;홍성희;유명재
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

표면처리된 알루미늄 5052-H34 합금의 층격특성에 관한 실험적 연구 (An Experimental Study on the Impact Characteristics of Surface Hardened Al 5052-H34 Alloy)

  • 손세원;김희재;이두성;홍성희
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.178-186
    • /
    • 2003
  • In order to investigate the fracture behaviors (penetration modes) and the resistance to penetration during ballistic impact of Al 5052-H34 alloy laminates, cold-rolled Al 5052-H34 alloy laminates, anodized Al 5052-H34 alloy laminates, and anodized Al 5052-H34 alloy after cold-rolling, a ballistic testing was conducted. In general, superior armor materials are brittle materials which have a high hardness. Ballistic resistance of these materials was measured by a protection ballistic limit (V$_{50}$), a statistical velocity with 50% probability fur incompletete penetration. Fracture begaviors and ballistic tolerance, described by penetration modes, ate observed from the results from the results of V$_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than V$_{50}$, respectively. PTP tests were conducted with 0$_{\circ}$obliquity at room temperature using 5.56mm ball projectile. V$_{50}$ tests with 0$_{\circ}$obliquity at room temperature were concucted with projectiles that could achieve neat or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Al 5052-H34 alloy laminates are compared to those of cold-rolled Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates and anodized Al 5052-H34 cold-rolled alloy.