• Title/Summary/Keyword: 5-level inverter

Search Result 145, Processing Time 0.024 seconds

A Small Signal Modeling of Three-level Neutral-Point-Clamped Inverter and Neutral-Point Voltage Oscillation Reduction (3레벨 NPC인버터의 소신호 모델링과 중성점 전압 진동 저감)

  • Cho, Ja-Hwi;Ku, Nam-Joon;Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2014
  • This study proposes a control design for the grid output current and for reducing the neutral-point voltage oscillation through the small-signal modeling of the three-phase grid connected with a three-level neutral-point-clamped (NPC) inverter with LCL filter. The three-level NPC inverter presents an inherent problem: the neutral-point voltage fluctuation caused by the neutral-point current flowing in or out from the neutral point. The small signal modeling consists of averaging, dq0 transformation, perturbing, and linearizing steps performed on a three-phase grid connected to a three-level NPC inverter with LCL filter. The proposed method controls both the grid output and neutral-point currents at every switching period and reduces the neutral-point voltage oscillation. The validity of the proposed method is verified through simulation and experiment.

A Novel Modulation Strategy Based on Level-Shifted PWM for Fault Tolerant Control of Cascaded Multilevel Inverters (Cascaded 멀티레벨 인버터의 고장 허용 제어를 위한 Level-Shifted PWM 기반의 새로운 변조 기법)

  • Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.718-725
    • /
    • 2015
  • This paper proposes a novel level-shifted PWM (LS-PWM) strategy for fault tolerant cascaded multilevel inverter. Most proposed fault-tolerant operation methods in many of studies are based on a phase-shifted PWM (PS-PWM) method. To apply these methods to multilevel inverter systems using LS-PWM, two additional steps will be implemented. During the occurrence of a single-inverter-cell fault, the carrier bands scheme is reconfigured and modulation levels of inverter cells are reassigned in this proposed fault-tolerant operation. The proposed strategy performs balanced three-phase line-to-line voltages and line currents when a switching device fault occurs in a cascaded multilevel inverter using LS-PWM. Simulation and experimental results are included in the paper to verify the proposed method.

Basic Characteristic of 5-level Inverter with Different Divided DC Link Voltage

  • Matsuse, Kouki;Matsumoto, Takafumi;Kodera, Yuji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.179-183
    • /
    • 2013
  • This paper report on experimental results of 5-level inverter by DC divided link voltage. We have alreday reported that DC divided link valtage comes to be able to reduse harmonic of out line voltage. So we tested whether DC divided link voltage can reduce harmonics in experimental setup. This paper shows simulation results and experimental results. And we confirmed that DC divided link voltage can also apply in experimental setup.

The Simple Harmonic Analysis Method of the Multi-Carrier PWM Techniques by Using the Output Phase Voltage in the Multi-Level Inverter (출력 상전압을 이용한 멀티-캐리어 PWM 기법의 간단한 고조파 분석 방법)

  • 김준성;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.352-360
    • /
    • 2003
  • This paper deals with a simple method in order to analyze and compare the harmonic characteristics in the multi-level inverter. Generally, the magnitude of harmonic components becomes different according to the multi-carrier Pulse Width Modulation(PWM) techniques, the modulation index($M_i$) and the switching frequency The previous papers analyzed the harmonic characteristics from the viewpoint of the space voltage vector. Hence, the calculation of the harmonic vector becomes more difficult and complex in 4-level or over 5-level. However, the proposed method has reduced an amount of calculation and simplified the process of it, using the relationship between the reference voltage and the output phase voltage to the load neutral point. It is applied to the 5-level cascade inverter and the harmonic characteristics for each multi-carrier PWM technique are compared through the simulation.

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.161-161
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

5-Level Inverter for Excitation Voltage Control of SRM (SRM의 여자전압제어를 위한 5-레벨 인버터)

  • Lee, S.H.;Park, S.J.;Ahn, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.294-296
    • /
    • 2000
  • Energy recovery in the regenerative region is very important when SRM(Switched Reluctance Motor) is used in traction drive. This is because that to reduce energy loss during mechanical braking and/or to have a high efficiency drive during braking. To control excitation voltage in motor operation and regenerative voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation in SRM.

  • PDF

A Novel Method of the Harmonic Analysis by Using the Multi-Carrier PWM Techniques in the Multi-Level Inverter (멀티 레벨 인버터에서 멀티 캐리어 PWM 방법을 사용한 고조파 분석의 새로운 방법)

  • Kim June-Sung;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.171-174
    • /
    • 2002
  • This paper deals with a novel method in order to analyze the harmonic characteristics in the multi-level inverter. Generally, the magnitude of harmonic components is different according to the carrier PWM techniques, modulation Index(Mi), and the level of multi-level inverter The previous papers analyzed the harmonic characteristics from the viewpoint of the space vector. Hence, the calculation of the harmonic vector becomes difficult and complex in 4-level or more than S-level. However, the proposed method of this paper reduced an amount of calculation and simplified the process of calculation by using the relationship between reference voltage and output phase voltage to load neutral. This paper analyzed the harmonic and it is applied to the multi-carrier PWM techniques in 5- level and other-level of cascaded inverter system.

  • PDF

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability

  • Roy, Tapas;Sadhu, Pradip Kumar;Dasgupta, Abhijit
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1173-1185
    • /
    • 2017
  • In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.

An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter (모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘)

  • Kim, I-Gim;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.