Browse > Article
http://dx.doi.org/10.6113/JPE.2017.17.5.1173

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability  

Roy, Tapas (School of Electrical Engineering, KIIT University)
Sadhu, Pradip Kumar (Department of Electrical Engineering, Indian Institute of Technology (ISM))
Dasgupta, Abhijit (School of Electrical Engineering, KIIT University)
Publication Information
Journal of Power Electronics / v.17, no.5, 2017 , pp. 1173-1185 More about this Journal
Abstract
In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.
Keywords
Boosting factor; Capacitor voltage balance; Impedance source inverter; Multilevel inverter; Pulse width modulation; Switched capacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Rodriguez, J.-S. Lai, and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002.   DOI
2 L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, "The age of multilevel converters arrives," IEEE Ind. Electron. Mag., Vol. 2, No. 2, pp. 28-39, Jun. 2008.   DOI
3 K. K. Gupta, A. Ranjan, P. Bhatnagar, L. K. Sahu, and S. Jain, "Multilevel inverter topologies with reduced device count: A review," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 135-151, Jan. 2016.   DOI
4 Q. F. Liu, H. Wang, and Z. Leng, "Discuss on the application of multilevel inverter in high frequency induction heating power supply," in IEEE Region 10 Conference, pp. 1-4, Nov. 2006.
5 F. Tourkhani, P. Viarouge, and T. A. Meynard, "Optimal design and experimental results of a multilevel inverter for an UPS application," in International Conference on Power Electronics and Drive Systems, pp. 340-343, Vol. 1, May 1997.
6 Y. Hinago and H. Koizumi, "A switched-capacitor inverter using series/parallel conversion with inductive load," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 878-887, Feb. 2012.   DOI
7 J. Liu, K. W. E. Cheng, and Y. Ye, "A cascaded multilevel inverter based on switched-capacitor for high-frequency ac power distribution system," IEEE Trans. Power Electron., Vol. 22, No. 8, pp. 4219-4230, Aug. 2014.
8 E. Babaei and S. S. Gowgani, "Hybrid multilevel inverter using switched capacitor units," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4614-4621, Sep. 2014.   DOI
9 R. Barzegarkhoo, H. M. Kojabadi, E. Zamiry, N. Vosoughi, and L. Chang, "Generalized structure for a single phase switched- capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches," IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5604-5617, Aug. 2016.   DOI
10 E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo, and M. Sabahi, "A new cascaded switched-capacitor multilevel inverter based on improved series-parallel conversion with less number of components," IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3582-3594, Jun. 2016.   DOI
11 M. Saeedifard, R. Iravani, and J. Pou, "Analysis and control of DC capacitor-voltage-drift phenomenon of a passive front-end five-level converter," IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 3255-3266, Dec. 2007.   DOI
12 F. H. Khan and L. M. Tolbert, "Bi-directional power management and fault tolerant feature in a 5- kW multilevel dc-dc converter with modular architecture," IET Power Electronics, Vol. 2, No. 5, pp. 595-604, Sep. 2009.   DOI
13 E. C. D. Santos, J. H. G. Muniz, E. R. C. da Silva, and C. B. Jacobina, "Nested multilevel topologies," IEEE Trans. Power Electron., Vol. 30, No. 8, pp. 4058-4068, Aug. 2015.   DOI
14 G. P. Adam, I. A. Abdelsalam, K. H. Ahmed, and B. W. Williams, "Hybrid multilevel converter with cascaded H-bridge cells for HVDC applications: Operating principle and scalability," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 65-77, Jan. 2015.   DOI
15 M. Hasan, S. Mekhilef, and M. Ahmed, "Three-phase hybrid multilevel inverter with less power electronic components using space vector modulation," IET Power Electronics, Vol. 7, No. 5, pp. 1256-1265, May 2014.   DOI
16 M. Zhu, K. Yu, and F. L. Luo, "Switched inductor Z-source inverter," IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2150-2158, Aug. 2010.   DOI
17 E. Babaei, and S. H. Hosseini, "New cascaded multilevel inverter topology with minimum number of switches," Energy Conversion and Management, Vol. 50, No. 11, pp. 2761-2767, Nov. 2009.   DOI
18 F. Z. Peng, "Z-source inverter," IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar./Apr. 2003.   DOI
19 C. J. Gajanayake, F. L. Luo, H. B. Gooi, P. L. So, and L. K. Siow, "Extended boost Z-source inverters," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2642-2652, Oct. 2010.   DOI
20 W. Qian, F. Z. Peng, and H. Cha, "Trans-Z-source inverters," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011.   DOI
21 D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, "Generalized multicell switched-inductor and switchedcapacitor Z-source inverters," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 837-848, Feb. 2013.   DOI
22 L. Pan, "L-Z-source inverter," IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6534-6543, Dec. 2014.   DOI
23 H. Fathi and H. Madadi, "Enhanced-boost Z-source inverters with switched Z-impedance," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 691-703, Feb. 2016.   DOI
24 M. Wei, P. C. Loh, and F. Blaabjerg, "Asymmetrical transformer-based embedded Z-source inverters," IET Power Electronics, Vol. 6, No. 2, pp. 261-269, Feb. 2013.   DOI
25 A. H. Rajaei, M. Mohamadian, S. M. Dehghan, and A. Yazdian, "Single-phase induction motor drive system using Z-source inverter," IET Electric Power Applications, Vol. 4, No. 1, pp. 17-25, Jan. 2010.   DOI
26 D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, "Cascaded multicell trans-Z-source inverters," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 826-836, Feb. 2013.   DOI