• Title/Summary/Keyword: 5-axis milling

Search Result 55, Processing Time 0.031 seconds

Development of tool-life prediction program to determine the optimal machining conditions in mold machining (금형 가공 시 최적 가공조건을 결정하기 위한 공구수명 예측 프로그램 개발)

  • Soon-Ok Park;Min-Hak Kim;Sun-Kyung Lee;Sung-Taek Jung
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Recently, with the emergence of the 4th industrial revolution, the demand for smart factories and factory automation is increasing. In this study, a tool life prediction program was developed to select optimal machining conditions using CNC milling equipment, which is widely used in flexible production and automation. The equipment used in the experiment was Hwacheon Machine Tool's 5-axis machining equipment, and the tool used was a 17F2R tool. For the machining path, the down-milling cutting method was selected and long-term machining was performed. The analysis standard for side wear on the tool was set at 0.1 to 0.2 mm, and tool life data and wear data were obtained in the cutting experiment. The program was created through the data obtained from the experiment, and a prediction rate of over 90% was secured when comparing the experimental data and the predicted data.

  • PDF

CAD/CAM Script Application Techniques for Addition Axial Application of CNC M/C (CNC가공기의 부가축 활용을 위한 CAD/CAM Script 활용 기법)

  • Lee, Yang-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1157-1163
    • /
    • 2009
  • In order to improve in quality and productivity using the CNC machine tools, it has been endeavored to elevate production process by adding supplementary axes(2 axes) to 2,3 axial CNC machine tools. It is because the movement between the progress of work in processed goods is remarkably decreased more than that of general CNC machine tools that productivity improvement with precision maintenance can be improved. VBScript in CAD/CAM is applied to utilize CNC machine tools added supplementary axes so that Multi-axial &Multi-process manufacturin g program can be conveniently drawn up. However, there is generally much skilful work and operation by the manual program of CAD(2.5D) and CNC machine tools in the filed. As a result of conducting an experiment by COM-filing VBScript at the spot of Insert Tip for milling Face Cutter in CAD/CAM Software(2.5D), it was not only timesaving to draw up program but also more convenient than complicated Multi CAD/CAM Software to approach and possible to program various products instantaneously.

A Study on the Development of a Step Cutter with Hybrid Process of Drilling and Boring (드릴, 보링 공정복합형 스텝 커터의 개발)

  • Hwang, Jong Dae;Heo, Yun Nyoung;Oh, Ji Young;Jung, Yoon Gyo;Cho, Sung Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • As demands for being economical, precise drilling process is on the increase. Therefore, the objective of this study is to develop a step cutter that can be controllable through micro dimension and can be changed from separate manufacturing processes of drilling and boring into an integrated one. In order to attain this object the step cutter is designed with a 3D geometric modeling and the design could be modified easily by using parametric modeling methodology. Also, collision is not occurred during manufacturing process because of cutting simulation. The step cutter is assembled by parts made up of 5-axis machining and sintering. Validation tests are accomplished. They show that developed cutter has characteristics such as reduction of machining time as well as the good surface roughness of the machined hole. Indeed, reliability could be obtained from a durability test.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation (실시간 NURBS 보간에 의한 동시 3차원 가공에 관한 연구)

  • Hong, Won-Pyo;Yang, Min-Yang;Lee, Eung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.89-94
    • /
    • 2002
  • Increasing demands on precision machining using CNC machines have necessitated that the tool to move with a position error as small as possible in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining with a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non-Uniform Rational B-Spline(NURBS) curve is used. With this accurate and efficient algorithm for the generation of complex. 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining is accomplished.

원내에서 5축 밀링기로 가공한 PMMA temporary crown의 다양한 임상적 활용

  • Suh, Sangjin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.26 no.2
    • /
    • pp.68-83
    • /
    • 2017
  • With the increasing popularity of dental CAD / CAM, the kinds of materials that can be used and the range that can be utilized are also increasing. One of the biggest advantages of a dental CADCAM is that you can make a final prosthesis with one visit, but in case of zirconia or a complex aesthetic prosthesis, it is often difficult to make it in one day. In this case, temporary PMMA material can be used to provide a temporary crown with aesthetic and functional properties to the patient and can be used as a test crown or template for the final prosthesis. And if you are with a 5-axis milling machine in a clinic, you can make a temporary crown precisely to a large extent in a short time. In this article, various applications and clinical cases of PMMA temporary crown in the clinic will be presented.

THIN FILM TECHNOLOGIES RELATED TO THE HIGH T$_{c}$ SUPERCONDUCTORS

  • Ri, Eui-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.415-423
    • /
    • 1996
  • Thin film technologies for fabricating SQUIDs involve etching and deposition procedures with the proper substrate materials and $YBa_2Cu_3O_{7-d}$ (YBCO) as the high $T_c$ superconductor. YBCO were prepared on various substrates of MgO, $SrTiO_3$, and $LaAlO_3$ by using off-axis magnetron sputtering methods and annealing in-situ. The parameters of film fabrication processes had been optimized to yield good quality films in terms of the critical temperature $T_c$ and the critical current density $J_c$. The optimized processes yielded $T_C$>90K along with $J_c$>$10_6A$$extrm{cm}^2$ at 77K and>$2\times10_7A/Cm^2$ at 5K. We fabricated step-edge type dc-SQUIDs and directly coupled magnetometers, producing step edges on MgO(100) substrates by etching with Ar-ion beam, depositing YBCO material on them, then patterning them by using ion-milling technique. Circuitizing washer-shape SQUIDs to possess a pair of step-edge junctions of 2-5$\mu$ line width with a high angle>$50^{\circ}C$ , we examined their I-V characteristics thoroughly and Shapiro steps clearly as we irradiate microwaves of 8-20 GHz frequency.

  • PDF

Fabrication and characterization of $YBa_2Cu_3O_7$ step-edge Josephson junctions prepared on sapphire substrates

  • Lim, Hae-Ryong;Kim, In-Seon;Kim, Dong-Ho;Park, Yong-Ki;Park, Jong-Chul
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.146-150
    • /
    • 2000
  • Step edge Josephson junctions in c-axis oriented $YBa_2Cu_3O_7$ films were fabricated on $CeO_2$ buffered sapphire substrates. The step angle was controlled in the wide range of $20^{\circ}\sim75^{\circ}$ by the Ar ion milling technique. I-V curves of junction fabricated on the thickness ratio of $\sim$0.8 and the step angle of $35^{\circ}$ were exhibited RSJ-like behavior with $I_CR_N$ product of $\sim250{\mu}A$ and critical current density of $\sim2\times10^4A/cm^2$ at 77 K. Critical current of step edge junction was increased linearly with decreasing temperature but the normal resistance was almost constant. Total samples of step edge Josephson junction was satisfied a scaling behavior of $I_CR_N{\propto}(J_C)^{0.5}$.

  • PDF

A Study on Improving the Efficiency of Magnetic Abrasive Polishing for Die & Mold Surfaces (금형면의 자기연마가공 고효율화에 관한 연구)

  • Lee, Yong Chul;Anzai, Masahiro;Nakagawa, Takeo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.59-65
    • /
    • 1996
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential methods for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of grindability by comparision with wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by colleagues. This paper also aims to improve the efficiency of polishing by introducing the easily-polished shape surface cutting method equalizing the tool feed per revolution to the pick feed. This cutting method was experimentally confirmed to have sufficient grindability to polish milled surface (with $10{{\mu}m}$Rmax surface roughness) into mirror surface (with $0.4{{\mu}m}$Rmax surface roughness).

  • PDF

Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation

  • Hassan, Bassam;Greven, Marcus;Wismeijer, Daniel
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.381-386
    • /
    • 2017
  • PURPOSE. To integrate extra-oral facial scanning information with CAD/CAM complete dentures to immediately rehabilitate terminal dentition. MATERIALS AND METHODS. Ten patients with terminal dentition scheduled for total extraction and immediate denture placement were recruited for this study. The patients were submitted to a facial scanning procedure using the in-office PritiMirror scanner with bite registration records in-situ. Definitive stone cast models and bite records were subsequently submitted to a lab scanning procedure using the lab scanner (iSeries DWOS; Dental Wings). The scanned models were used to create a virtual teeth setup of a complete denture. Using the intra-oral bite records as a reference, the virtual setup was incorporated in the facial scan thereby facilitating a virtual clinical evaluation (teeth try-in) phase. After applying necessary adjustments, the virtual setup was submitted to a CAM procedure where a 5-axis industrial milling machine (M7 CNC; Darton AG General) was used to fabricate a full-milled PMMA immediate provisional prosthesis. RESULTS. Total extractions were performed, the dentures were immediately inserted, and subjective clinical fit was evaluated. The immediate provisional prostheses were inserted and clinical fit, occlusion/articulation, and esthetics were subjectively assessed; the results were deemed satisfactory. All provisional prostheses remained three months in function with no notable technical complications. CONCLUSION. Ten patients with terminal dentition were treated using a complete digital approach to fabricate complete dentures using CAD/CAM technology. The proposed technique has the potential to accelerate the rehabilitation procedure starting from immediate denture to final implant-supported prosthesis leading to more predictable functional and aesthetics outcomes.

Evaluation of marginal discrepancy of pressable ceramic veneer fabricated using CAD/CAM system: Additive and subtractive manufacturing

  • Kang, Seen-Young;Lee, Ha-Na;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.347-353
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the marginal discrepancy of heat-pressed ceramic veneers manufactured using a CAD/CAM system. MATERIALS AND METHODS. The ceramic veneers for the abutment of a maxillary left central incisor were designed using a CAD/CAM software program. Ten veneers using a microstereolithography apparatus (AM group), ten veneers using a five-axis milling machine (SM group), and ten veneers using a traditional free-hand wax technique (TW group) were prepared according to the respective manufacturing method. The ceramic veneers were also fabricated using a heat-press technique, and a silicone replica was used to measure their marginal discrepancy. The marginal discrepancies were measured using a digital microscope (${\times}160$ magnification). The data were analyzed using a nonparametric Kruskal-Wallis H test. Finally, post-hoc comparisons were conducted using Bonferroni-corrected Mann-Whitney U tests (${\alpha}=.05$). RESULTS. The $mean{\pm}SD$ of the total marginal discrepancy was $99.68{\pm}28.01{\mu}m$ for the AM group, $76.60{\pm}28.76{\mu}m$ for the SM group, and $83.08{\pm}39.74{\mu}m$ for the TW group. There were significant differences in the total marginal discrepancies of the ceramic veneers (P<.05). CONCLUSION. The SM group showed a better fit than the AM and TW groups. However, all values were within the clinical tolerance. Therefore, CAD/CAM manufacturing methods can replace the traditional free-hand wax technique.