• Title/Summary/Keyword: 5-axis machine

Search Result 274, Processing Time 0.025 seconds

Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool (5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘)

  • Yang, Seung-Han;Lee, Chul-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

A Study on Post-Processing and Machine Simulation of AC Type 5-Axis Machine Tool for Machining of Mold Surface (금형 곡면 가공을 위한 AC타입 5축 가공기의 포스트프로세싱 및 머신 시뮬레이션에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, a machine simulation system was built using the actual scale of an AC-type 5-axis machine tool for mold surface machining that can be used in applications, such as, modeling and machine building, stroke, and collision detection. The validity of the 5-axis machine simulation system was verified by performing tool path generation, post-processing, machine simulation, prototype motion simulation, and an actual cutting experiment. This entire process was intended to activate the 5-axis machining in mold surface machining.

A Study on the Test Workpiece for Accuracy Evaluation of 5-Axis Machine Tool (5축 공작기계 정밀도 평가를 위한 표준 공작물에 관한 연구)

  • Youn, Jae-Woong;Kim, Ki-Hwan;Park, Jong Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Recently, a demand for precision 5-axis machine tools is significantly increasing, and the maintenance of machine tool accuracy becomes more important. it is very difficult to evaluate to accuracy of 5-axis M/C in the production site since it needs expensive measuring equipment and skilled engineer. On the other hand, evaluation items of 5-axis M/C are not systematically organized in the existing KS and ISO standards. In this study, the evaluation items for 5-axis M/C were derived systematically and a test workpiece was developed to evaluate the machine tool accuracy more easily. The error sources of machine tool can be estimated by machining and measuring of the test workpiece. The correlation between the machine tool accuracy and the accuracy of machined test workpiece was analyzed. As a result, the accuracy of machined test workpiece represented the accuracy of machine tool and the error sources very effectively.

자유곡면 5축 NC가공에 있어서의 최적 CL data산출

  • 최병규;박정환;김화영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.124-130
    • /
    • 1991
  • 5-axis NC machining of sculptured surface using non-ballendmill cutters (eg. facemilling cutters) is widely used in the machining of turbine blades and marine propellers. Since there are more degrees of freedom in 5-axis machining than in 3-axis machining, generating "optimum" cutter paths and finding desirable cutter positions become very important in order for an efficient use of 5-axis NC machines. Also critical in 5-axis NC machining are collision avoidance, gouging checking, and efficient kinematic solutions. In this paper we discuss the above issues in generating 5-axis CL data. They are : kinematics modeling of NC machine; inverse kinematics solution; interference between machine component and surface; cutter gouging. A unique search method for obtaining optimal CL data is proposed. The proposed method has been successfully implemented in the machining of marine propellers on a dual 5-axis (ie, 9-axis) NC machine.C machine.

  • PDF

5-axis Milling Machining Time Estimation based on Machine Characteristics (기계 특성에 근거한 5축 밀링가공 시간의 예측)

  • So, B.S.;Jung, Y.H.;Jeong, H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (l) Cutter Axis Direction Verctor and Post-Processing (5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (I) 공구축 방향의 벡터와 포스트 프로세싱)

  • 조현덕;전용태;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2001-2011
    • /
    • 1993
  • This study deals with the machining of sculptured surfaces on 5-axis CNC milling machine with end mill cutter. The study (I) has the following contents. In 5-axis CNC milling, CL-data consist of CC-data and cutter axis direction vector at the CC-point. Thus, in machining of the sculptured surface on 5-axis CNC milling machine, determination of the direction vector of the milling cutter is very important. The direction vector is obtained by the fact that bottom plane of the milling cutter must not interfere with the free-form surface being machined. The interference is checked by the z-map method which can be applied in all geometric types of the sculptured surfaces. After generating NC part programs from 5-axis post-processing algorithms, sculptured surfaces were machined with 5-axis CNC milling machine (CINCINNATI MILACRON, 20V-80). From these machining tests, it was shown that the machining of the free-form surfaces on 5-axis CNC milling machine with the end mill has smaller cusp heights and shorter cutting time than on 3-axis CNC milling machine with the ball-end mill. Thus, 5-axis CNC end milling was effective machining method for sculptured surfaces. The study (II) deals with the prediction of cusp height and the determination of tool path interval for the 5-axis machining of sculptured surfaces on the basis of study(I).

5-Axis CNC Machining for Drum Cam with Rotational Follower - I (Post Processing Method for Rough Machining) (회전형 종동절을 갖는 드럼 캠의 5-축 CNC 가공 - I (황삭가공을 위한 포스트 프로세싱))

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.678-683
    • /
    • 2010
  • The drum cam with rotational follower is used to apply the ATC and index table of machine tools and it has the merit of minimizing the backlash. In general, to machine the drum cam with rotational follower, 5-axis CNC machine must be used and its kinematic principle must be included in modeling on CAM. So, the commercialized CAM software can't be applied to this machining of drum cam. Though some special software for machining drum cam was developed, it could be applied to special 5-axis CNC machine tools and the finish machining module was not applied. To solve this problem, this study includes the induction of the post processing algorithm for the rough machining of drum cam on several 5-axis CNC machine tools, type AC, AB and Be. The finish machining software will be treated in next study. A sample drum cam was machined on 5-axis CNC machine tool of AC type. The designed geometric profile of drum cam consist to the measured profile after machining well. This post processing algorithm for rough machining of the drum cam was clearly verified.

Inverse Kinematics for Five-axis Machines Using Orthogonal Kinematics Chain (5축 밀링가공기의 직교 특성을 이용한 역기구학 방정식의 유도)

  • So, Bum-Sik;Jung, Yoong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • This paper proposes an efficient algorithm for deriving inverse kinematics equation of 5-axis machine. Because the joint order and direction of 5-axis machine are different for each type of machine, each type of machine needs its own inverse kinematics equation for post-processing of NC data. Also derived inverse kinematics equation may cause problems of indeterminate and inconsistent solution. In order to resolve these problems, we have developed a generic method to derive direct kinematics equation by considering orthogonal joints of 5-axis machines. Using this method, we also have proposed a general algorithm for deriving inverse kinematics equation for various types of 5-axis machines.

Development of 5-axis $CO_2$ Laser Cutting Machine and CAM (5축 CO2 레이저 컷팅 머신 및 CAM 시스템 개발)

  • Kang Jae-Gwan;Yeom S.B.;Kang B.S.;Lee H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.245-246
    • /
    • 2006
  • For developing 5-axis laser cutting systems, many problems such as rotating of laser head or table, 5-axis tool path generation and collision avoidance between laser head and product should be solved. In this paper, a five-axis laser cutting machine with table swivel and rotary type configuration is developed. The five axes (X,Y,Z,A,B) are controlled and interfaced to PC via MMC board. Two kinds of CAM S/W such as commercial 5-axis CAM S/W(Euclid) and UG-API are engaged to generate NC code for the developed 5-axis laser cutting machine.

  • PDF

A CAD/CAM System for Steam Paths of Turbine Generators (터빈발전기의 Steam Path 전용 CAD/CAM시스템)

  • Kim Y. I.;Kim D. S.;Jun C. S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.254-261
    • /
    • 2005
  • The purpose of this research is to develop a method for cutting non-circular holes on a bent thick plate. Generally in order to cut the holes on the large plates, a special-purpose 5-axis machine is needed. However, such a machine is unavailable in most of the machine shops. This paper provides a description of such a method that utilizes a general-purpose 5-axis water-jet machine in place of the special-purpose machine: First, the bent piece is transformed into a flat plate, where the shape of the holes is reconstructed by considering deformation during bending. Then, after a 5-axis NC data is generated, the holes on the flat plate are cut using the 5-axis water-jet machine. The final step is to return to its, original shape by bending the plate with its newly-cut holes. The proposed methodology is implemented as a dedicated system by customizing a commercial CAD/CAM system. Some illustrations are provided throughout the paper in order to show the validity of the proposed methods and the developed system.