• 제목/요약/키워드: 5-axis Tool Path

검색결과 62건 처리시간 0.023초

옵셋 다면체를 이용한 5축 가공경로 생성 (5-Axis Tool Path Generation from Offset Polyhedral Mesh)

  • 김수진;양민양
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.678-683
    • /
    • 2006
  • In this paper, the 5-axis tool path that has been generated from the original surface is, newly generated from the offset polyhedral mesh. In this approach, the interference check between two solid models can be simplified to that of offset polyhedral mesh and axis line. The tool path computation and interference check based on the offset mesh is simpler and faster than that based on the original surface. But 5-axis tool path generation using this approach is able to apply only for ball endmill and still takes longer time than 3-axis tool path generation.

CL면 변환을 이용한 새로운 5축 가공경로 생성방법 (New 5-axis Tool Path Generation Algorithm Using CL Surface Transformation)

  • 김수진;양민양
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.800-808
    • /
    • 2006
  • In this paper, the CL surface transformation approach that inversely deforms the 3-axis tool path generated on the deformed CL surface to a 5-axis tool path is introduced. The proposed CL surface transformation approach can be used if the orientation of the cutter is predefined. The CL surface based 3-axis tool path generation algorithms that have been improved well can be applied to the f-axis tool path generation.

Automatic NC-Date Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe Heel-Angles and Adaptive

  • Piao, Cheng-Dao;Lee, Cheol-Soo;Cho, Kyu-Zong;Park, Gwang--Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.753-761
    • /
    • 2004
  • In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data.

5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구 (A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center)

  • 장동규;조환영;이희관;공영식;양균의
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.

보간 길이 최적화에 의한 5축밀링 가공속도 향상 (Machining Speed Enhancement for 5-Axis Milling by Step Length Optimization)

  • 소범식;정융호
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.422-428
    • /
    • 2006
  • In this paper, an NC data optimization approach for enhancing 5-axis machining speed is presented. It is usual to use expensive commercial CAD/CAM programs for NC data of 5-axis machining, since it needs very large calculations for optimal tool positioning and orientation, tool path planning, and collision-free tool path generation. Since commercial CAD/CAM systems have similar functions and efficiency based on common algorithms of reliable theories, they do not have their own unique features for machining speed and efficiency. In other words, most commercial CAD/CAM systems consider only the characteristics of part geometry to be machined, which means that they generate almost the same NC data if the part to be machined is the same, even though different machines are used for the pin. A new approach is proposed for optimizing NC data of 5-axis machining, which is based on the characteristics of the machine to be operated. As a result, the speed of 5-axis machining can increase without losing machining accuracy and surface quality.

역공학 기반 5축 신발 러핑용 CAM 시스템 개발 (Development of CAM system for 5-axis automatic roughing machine Based on Reverse Engineering)

  • 김화영;손성민;안중환;강동배
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.122-129
    • /
    • 2005
  • Shoe with leather upper such as safety and golf shoe requires a roughing process where the upper is roughed fur helping outsole to be cemented well. It is an important and basic process for production of leather shoe but is not automated yet. Thus, there are problems that the defect rate is high and the quality of roughed surface is not uniform. In order to solve such problems, the interest in automation of roughing process is being increased and this paper introduces CAM system for 5-axis automatic roughing machine as one part of automation of roughing process. The CAM system developed interpolates a B-spline curve using points measured from the Roughing Path Measurement System. The B-spline curve is used to generate the tool path and orientation data fer a roughing tool which has not only stiffness but also flexibility to rough the inclined surface efficiently. For productivity, the upper of shoe is machined by side of the roughing tool and tool offset is applied to the roughing tool for machining of inclined surface. The generated NC code was applied to 5-axis polishing machine for the test. The upper of shoe was roughed well along the roughing path data from CAM and the roughed surface was proper fur cementing of the outsole.

5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (II) 커섭 높이 예측과 공구경로 결정 (A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (ll) The Prediction of Cusp Heights and Determination of Tool Path interval)

  • 조현덕;전용태;양민양
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2012-2022
    • /
    • 1993
  • For the machining of the sculptured surfaces on 5-axis CNC milling machine, the milling cutter direction vector was determined in the study (I) with 5-axis post-processing. Thus, it was possible to cut the sculptured surfaces on five-axis CNC milling machine with the end mill cutter. Then, for smooth machined surfaces in five-axis machining of free-from surfaces, this study develops an algorithm for prediction of cusp heights. Also, it generates tool path such that the cusp heights are constrained to a constant value or under a certain value. For prediction of the cusp height between two basis points, a common plane, containing the line crossing two basis points and the summation vector of two normal vectors at two basis points, is defined. The cusp height is the maximum value of scallops on the common plane after end mill cutter passes through the common plane. Sculptured surfaces were machined with CINCINNATI MILACRON 5-axis machining center, model 20V-80, using end mill cutter. Cusp heights were verified by 3-dimensional measuring machine with laser scanner, WEGU Messtechnik GmbH.