• 제목/요약/키워드: 5-HT_{3A} receptor

검색결과 105건 처리시간 0.024초

Gastroprokinetic agent, mosapride inhibits 5-HT3 receptor currents in NCB-20 cells

  • Park, Yong Soo;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.419-426
    • /
    • 2019
  • Mosapride accelerates gastric emptying by acting on 5-hydroxytryptamine type 4 ($5-HT_4$) receptor and is frequently used in the treatment of gastrointestinal (GI) disorders requiring gastroprokinetic efficacy. We tested the effect of mosapride on 5-hydroxytryptamine type 3 ($5-HT_3$) receptor currents because the $5-HT_3$ receptors are also known to be expressed in the GI system and have an important role in the regulation of GI functions. Using the whole-cell voltage clamp method, we compared the currents of the $5-HT_3$ receptors when 5-HT was applied alone or was co-applied with mosapride in cultured NCB-20 cells known to express $5-HT_3$ receptors. The $5-HT_3$ receptor current amplitudes were inhibited by mosapride in a concentration-dependent manner. Mosapride blocked the peak currents evoked by the application of 5-HT in a competitive manner because the $EC_{50}$ shifted to the right without changing the maximal effect. The rise slopes of $5-HT_3$ receptor currents were decreased by mosapride. Pre-application of mosapride before co-application, augmented the inhibitory effect of mosapride, which suggests a closed channel blocking mechanism. Mosapride also blocked the opened $5-HT_3$ receptor because it inhibited the $5-HT_3$ receptor current in the middle of the application of 5-HT. It accelerated desensitization of the $5-HT_3$ receptor but did not change the recovery process from the receptor desensitization. There were no voltage-, or use-dependency in its blocking effects. These results suggest that mosapride inhibited the $5-HT_3$ receptor through a competitive blocking mechanism probably by binding to the receptor in closed state, which could be involved in the pharmacological effects of mosapride to treat GI disorders.

Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

  • Kim, Ki Jung;Jeun, Seung Hyun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.169-177
    • /
    • 2017
  • Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine $(5-HT)_3$ receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine ($1{\sim}300{\mu}M$) resulted in a concentration-dependent reduction in peak amplitude of currents induced by $3{\mu}m$ of 5-HT for an $IC_{50}$ value of $28.2{\pm}3.6{\mu}M$ with a Hill coefficient of $1.2{\pm}0.1$. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, $5-HT_3$-mediated currents evoked by 1 mM dopamine, a partial $5-HT_3$ receptor agonist, were inhibited by lamotrigine co-application. The $EC_{50}$ of 5-HT for $5-HT_3$ receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate $5-HT_3$ receptor desensitization, inhibited $5-HT_3$ receptor currents in a concentration-dependent manner. The deactivation of $5-HT_3$ receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of $5-HT_3$ receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the $5-HT_3$ receptor currents. These results indicate that lamotrigine inhibits $5-HT_3$-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

Tricyclic antidepressant amitriptyline inhibits 5-hydroxytryptamine 3 receptor currents in NCB-20 cells

  • Park, Yong Soo;Myeong, Seok Ho;Kim, In-Beom;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.585-595
    • /
    • 2018
  • Amitriptyline, a tricyclic antidepressant, is commonly used to treat depression and neuropathic pain, but its mechanism is still unclear. We tested the effect of amitriptyline on 5-hydroxytryptamine 3 ($5-HT_3$) receptor currents and studied its blocking mechanism because the clinical applications of amitriptyline overlapped with $5-HT_3$ receptor therapeutic potentials. Using a whole-cell voltage clamp method, we recorded the currents of the $5-HT_3$ receptor when 5-HT was applied alone or co-applied with amitriptyline in cultured NCB-20 neuroblastoma cells known to express $5-HT_3$ receptors. To elucidate the mechanism of amitriptyline, we simulated the $5-HT_3$ receptor currents using Berkeley $Madonna^{(R)}$ software and calculated the rate constants of the agonist binding and receptor transition steps. The $5-HT_3$ receptor currents were inhibited by amitriptyline in a concentration-dependent, voltage-independent manner, and a competitive mode. Amitriptyline accelerated the desensitization of the $5-HT_3$ receptor. When amitriptyline was applied before 5-HT treatment, the currents rose slowly until the end of 5-HT treatment. When amitriptyline was co-applied with 5-HT, currents rose and decayed rapidly. Peak current amplitudes were decreased in both applications. All macroscopic currents recorded in whole cell voltage clamping experiments were reproduced by simulation and the changes of rate constants by amitriptyline were correlated with macroscopic current recording data. These results suggest that amitriptyline blocks the $5-HT_3$ receptor by close and open state blocking mechanisms, in a competitive manner. We could expand an understanding of pharmacological mechanisms of amitriptyline related to the modulation of a $5-HT_3$ receptor, a potential target of neurologic and psychiatric diseases through this study.

신경약리학적 방법에 의한 $5HT_{1A}$ Receptor agonist의 평가

  • 김학성;성연희
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1992년도 제1회 신약개발 연구발표회 초록집
    • /
    • pp.39-39
    • /
    • 1992
  • 5-Hydroxytryptamine(serotonin, 5-HT)은 중추신경의 신경 전달물질로서 조울병, 불안신경증 등의 정신병태생리에 중요한 역할을 한다. Radioligand 결합실험에 의하여 5-$HT_{1A}$, 5-$HT_{1B}$, 5-$HT_{1C}$, 5-$HT_{1D}$, 5-$HT_{2}$, 5-$HT_3$의 5-HT receptor subtypes의 존재가 확인되어 있고, 그 중에서도 5-$HT_{1A}$ receptor는 중추작용 증 정 도의 조절에 관계가 깊은 raphe nuclei 및 해마에 주로 존재하여 약리학적으로는 체온강하, 혈압 강하, 과식작용, corticosterone 분비 등과 관련되어 있음이 알려져 있다. 따라서 본 수용체 agonist가 항불안약, 항우울약 또는 항고혈압약으로서의 응용이 가능해지면서 5-$HT_{1A}$ 수용체 기능의 해명 및 그 agonist의 개발이 주목받고 있는 가운데, 본 연구에 있어서, 항불안약 개발목적으로 합성된 일련의 화합물 중 1-<3-(3,4-methylene-dioxyphenoxy)propyl> 4-phenyl piperazine (DP-554)이 5-HT 수용체에 특이적이고 선택적으로 높은 친화성을 가지며, rat 해마의 막분획에서 adenylate cyclase 활성을 억제하고, 뇌내 5-HT turnover rate를 감소시키는 둥의 약리학적 작용을 나타내어, 이 화합물이 5-$HT_{1A}$ receptor agonist로서 작용함을 밝혔다. Mouse vas deferens (MVD)를 이용한 실험에서 5-$HT_{1A}$ receptor가 MVD의 교감신경 말단에 존재하여 그 neurotransmission을 억제함이 시사되었으며, 이 조직에서 또한 5-$HT_2$와 5-$HT_3$ 수용체의 존재를 확인하고 각각의 기능을 분명히 했다.

  • PDF

Synthesis and SAR of N-Chlorophenyl Substituted Piperrazinylethyl-aminomethylpyrazoles as 5-HT3A Inhibitors

  • Lee, Byung-Hwan;Choi, In-Sung;Rhim, Hye-Whon;Choi, Kyung-Il;Nah, Seung-Yeol;Nam, Ghil-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2707-2712
    • /
    • 2009
  • 5-$HT_{3}$ receptor;5-$HT_{3A}$ receptor channel activity;Novel 5-$HT_{3}$ receptor channel current blockers;Chlorophenyl substituted piperazinylethylaminomethylpyrazoles; The 5-$HT_{3A}$ receptors are one of ligand-gated ion channels and are known to be involved in visceral pain, anxiety, or anticancer agent-induced nausea and vomiting. In present study, we designed novel skeletons based on the developed 5-$HT_{3}$ receptor antagonists and evaluated their effects on 5-$HT_{3A}$ receptor channel currents ($I_{5-HT}$) of a series of pyrazole derivatives having N-chlorophenylpiperazine functionality (6-9). We found that most of N-p-chlorophenyl substituted piperazinyl-pyrazole derivatives (7b, 7c, 7e and 7h) exhibited the high potency for the inhibition of $I_{5-HT}$, whereas the compound without chloride (6) or with m-chlorophenyl group (a serious of 8 and 9) showed the low potency. These result indicate that p-chlorophenyl group is might play an important role for increasing the inhibitory potency on $I_{5-HT}$.

Selective serotonin reuptake inhibitor escitalopram inhibits 5-HT3 receptor currents in NCB-20 cells

  • Park, Yong Soo;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.509-517
    • /
    • 2019
  • Escitalopram is one of selective serotonin reuptake inhibitor antidepressants. As an S-enantiomer of citalopram, it shows better therapeutic outcome in depression and anxiety disorder treatment because it has higher selectivity for serotonin reuptake transporter than citalopram. The objective of this study was to determine the direct inhibitory effect of escitalopram on 5-hydroxytryptamine type 3 ($5-HT_3$) receptor currents and study its blocking mechanism to explore additional pharmacological effects of escitalopram through $5-HT_3$ receptors. Using a wholecell voltage clamp method, we recorded currents of $5-HT_3$ receptors when 5-HT was applied alone or co-applied with escitalopram in cultured NCB-20 neuroblastoma cells known to express $5-HT_3$ receptors. 5-HT induced currents were inhibited by escitalopram in a concentration-dependent manner. $EC_{50}$ of 5-HT on $5-HT_3$ receptor currents was increased by escitalopram while the maximal peak amplitude was reduced by escitalopram. The inhibitory effect of escitalopram was voltage independent. Escitalopram worked more effectively when it was co-applied with 5-HT than pre-application of escitalopram. Moreover, escitalopram showed fast association and dissociation to the open state of $5-HT_3$ receptor channel with accelerating receptor desensitization. Although escitalopram accelerated $5-HT_3$ receptor desensitization, it did not change the time course of desensitization recovery. These results suggest that escitalopram can inhibit $5-HT_3$ receptor currents in a non-competitive manner with the mechanism of open channel blocking.

Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons

  • Chin, Chur;Kim, Seong-Il
    • Genomics & Informatics
    • /
    • 제5권2호
    • /
    • pp.77-82
    • /
    • 2007
  • Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol-1,4,5-triphosphate/calcium $(InsP3/Ca^{2+})$ signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a $Ca^{2+}$ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused $Ca^{2+}$ release from the sarcoplasmic reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the $InsP3/Ca^{2+}/PLC-{\gamma}$ and adenyl cyclase / cAMP signaling pathways.

Characteristics of 5-Hydroxytryptamine Receptors Involved in Contraction of Feline Ileal Longitudinal Smooth Muscle

  • Wang, Yiyi;Park, Sun-Young;Oh, Kyung-Hoon;Min, Young-Sil;Lee, Yun-Jeong;Lee, Seok-Yong;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.267-272
    • /
    • 2011
  • A number of studies have demonstrated that 5-hydroxytryptamine (5-HT) can induce muscle contraction or relaxation response and enhance secretion in the gastrointestinal tract via a multiplicity of 5-HT receptor subtypes. In the present study, we investigated the pharmacological characterization of the 5-HT-induced contractile response in longitudinal smooth muscle isolated from the feline ileum. Addition of 5-HT into muscle chambers enhanced the basal tone and spontaneous activity in a concentration-dependent manner. The neurotoxin tetrodotoxin did not alter the 5-HT-induced contraction of the longitudinal muscles. Neither atropine nor guanethidine affected the contraction. The 5-HT agonists, 5-methylserotonin hydrochloride and mosapride, also evoked concentration-dependent contractions. The 5-HT-induced contraction was enhanced by the $5HT_2$ receptor antagonist ketanserin and the $5-HT_3$ receptor antagonist ondansetron but was inhibited by the 5-$HT_1$ receptor antagonist methysergide and 5-$HT_4$ receptor antagonist GR113808. These results indicate that 5-$HT_1$ and 5-$HT_4$ receptors may mediate the contraction of the 5-HT-induced response and 5-$HT_2$ and 5-$HT_3$ receptors may mediate 5-HT-induced relaxation in feline ileal longitudinal smooth muscles.

Synthesis and Inhibition Effects on 5-HT6 Receptor of Benzothiazole Derivatives

  • Hayat, Faisal;Yoo, Euna;Rhim, Hyewhon;ParkChoo, Hea-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.495-499
    • /
    • 2013
  • A novel series of aryl sulfonylpiperazine derivatives (5-15) were synthesized as 5-$HT_6$ ligands. In vitro assay was evaluated by measuring the 5-HT-induced $Ca^{2+}$ increases using HeLa cell line expressing the cloned human 5-$HT_6$ receptor, and the compound 13 showed potent 5-$HT_6$ receptor antagonistic effect with $IC_{50}$ value of 3.9 ${\mu}M$. Compound 13 also showed good selectivity on the 5-$HT_6$ over 5-$HT_4$ and 5-$HT_7$ receptors.

The Inhibitory Effects of Korean Red Ginseng Saponins on 5- HT3A Receptor Channel Activity Are Coupled to Anti-Nausea and Anti-Vomiting Action

  • Kim Jong-Hoon;Lee Byung-Hwan;Jeong Sang Min;Nah Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제29권1호
    • /
    • pp.37-43
    • /
    • 2005
  • We performed in vitro and in vivo studies to know whether the inhibitory effects of ginsenosides on $5-HT_{3A}$ receptor channel acctivity are coupled to anti-nausea and anti-vomiting action. In vitro study, we investigated the effect of compound K (CK) and M4, which are ginsenoside metabolites, on human $5-HT_{3A}$ receptor channel activity expressed in Xenopus oocytes using two-electrode voltage clamp technique. Treatment of CK or M4 themselves had no effect in both oocytes injected with $H_2O\;and\;5-HT_{3A}$ receptor cRNA. In oocytes injected with $5- HT_{3A}$ receptor cRNA, M4 treatment inhibited more potently 5-HT-induced inward peak current $(I_{5-HT})$ than CK with dose-dependent and reversible manner. The half-inhibitory concentrations $(IC_{50})$ of CK and M4 were $36.9\;\pm\;10.1\;and\;7.3\;\pm\;2.2\;{\mu}M$, respectively. The inhibition of $I_{5-HT}$ by M4 was non-competitive and voltage-independent. These results indicate that M4 might regulate $5-HT_{3A}$ receptors. In vivo experiments, injection of cisplatin (7.5 mg/kg, i.v.) induced both nausea and vomiting with 1 h latency. These episodes reached to peak after 2 h and persisted for 4 h. Pre-treatment of GTS (500 mg/kg, p.o.) significantly reduced cisplatin-induced nausea and vomiting by $51\;\pm\;8.4\;and\;48.8\;\pm\;6.4\%$ during 4 h compared to GIS­untreated group, respectively. These results show the possibility that in vitro inhibition of $5-HT_{3A}$ receptor channel activity by ginsenosides might be coupled to in vivo anti-emetic activity.