• Title/Summary/Keyword: 5-Aminoimidazole-4-carboxamide ribonucleotide

Search Result 7, Processing Time 0.024 seconds

Acidity Enhances the Ability of 5-Aminoimidazole-4-carboxamide Ribonucleotide to Increase Respiration and Lipid Metabolism in Daphnia magna

  • Han, Chloe;Kottapalli, Aarthi;Boyapati, Keerti;Chan, Sarah;Jeong, Yong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.253-259
    • /
    • 2019
  • 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), a structural analog of adenosine monophosphate (AMP), promotes oxidative remodeling in muscle cells. AICAR activates AMP-dependent protein kinase (AMPK), thus increasing lipid metabolism, respiration, and mitochondrial counts. This process is called oxidative remodeling, which enhances the physical endurance of mice. To test this drug on an invertebrate that is genetically similar to humans, we used the small water crustacean Daphnia magna, which is sensitive to changes in water conditions. We tested the effects of pH on the efficacy of AICAR using two methods. One method measured oxygen consumption of Daphnia in oxygen chambers. The other method determined lipid levels of Daphnia through fluorescent tagging of lipids. The results showed that when exposed to AICAR at pH 6.58, D. magna consumed more oxygen and had lower overall levels of lipids, which is consistent with the expected effects of AICAR, such as increased respiration and lipid metabolism.

Regulation of Tubercidin Biosynthesis in Streptomyces tubercidicus by Adenine and Histidine (Streptomyces tubercidicus에서 Adenine과 Histidine에 의한 Tubercidin 생합성 조절)

  • 유진철;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 1991
  • The regulatory mechanism of tubercidin biosynthesis in Streptomyces tubercidicus was studied. In a wild type strain, addition of adenine and histidine into the medium decreased the tubercidin production by 60-65% and 40%, respectively. The effects of adenine and histidine were alleviated by the addition of inosine monophosphate and 5-aminoimidazole-4-carboxamide ribotide. The production of tubercidin in S. tubercidicus K115 strain ($ade^{-}$ ) was nearly shut off by histidine. In contrast with K115 strain, adenine inhibited the tubercidin biosynthesis in S. tubercidicus K412 strain ($his^{-}$. In S. tubercidicus F667 strain ($ade^{-}$ , $his^{-}$ ), tubercidin production was increased by adenine and histidine. From the effects of adenine and histidine on tubercidin biosynthesis in S. tubercidicus wild type and mutant strains, it became known that feedback control by adenine and histidine of biosynthetic pathwat for purine ribonucleotide and histidine are involved in the regulation of tubercidin biosynthesis.

  • PDF

Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells

  • Park, Eun-Jung;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.453-462
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS: Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS: We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS: Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.

Ethanol Extract of Schisandra chinensis (Turcz.) Baill. Reduces AICAR-induced Muscle Atrophy in C2C12 Myotubes (마우스 C2C12 근관세포에서 AICAR로 유도된 근위축에 미치는 오미자 추출물의 영향)

  • Kang, Young-Soon;Park, Cheol;Han, Min-Ho;Hong, Su-Hyun;Hwang, Hye-Jin;Kim, Byung Woo;Kim, Cheol Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • Muscle atrophy, known as a sarcopenia, is defined as a loss of muscle mass resulting from a reduction in the muscle fiber area or density due to a decrease in muscle protein synthesis and an increase in protein breakdown. Schisandrae fructus (SF) extract of the fruits of Schisandra chinensis (Turcz) Baillon has been used as a tonic in traditional medicine for thousands of years. Although a great deal of work has been carried out on the therapeutic potential of SF, its pharmacological mechanisms of action in muscle diseases actions remain unclear. In the present study, we investigated the inhibitory effects of SF ethanol extracts on the production of muscle atrophy factors in C2C12 myotubes stimulated with 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), an AMP-activated kinase (AMPK) activator, and sought to determine the underlying mechanisms of action. AICAR upregulated atrophy-related ubiquitin ligase muscle RING finger-1 (MuRF-1) and stimulated the levels of the forkhead box O3a (FoxO3a) transcription factor in the C2C12 myotubes. SF supplementation effectively and concentration- dependently counteracted AICAR-induced muscle cell atrophy and reversed the increased expression of MuRF-1 and FoxO3a. Our study demonstrates that SF can reverse the muscle cell atrophy caused by AICAR through regulation of the AMPK and FoxO3a signaling pathways, followed by inhibition of MuRF-1.

The Expression of Genes Related to Egg Production in the Liver of Taiwan Country Chickens

  • Ding, S.T.;Ko, Y.H.;Ou, B.R.;Wang, P.H.;Chen, C.L.;Huang, M.C.;Lee, Y.P.;Lin, E.C.;Chen, C.F.;Lin, H.W.;Cheng, Winston Teng Kuei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • The purpose of this study was to detect expression of genes related to egg production in Taiwan Country chickens by suppression subtractive hybridization. Liver samples of mRNA extraction from two Taiwan Country chicken strains (L2 and B), originated from the same population but with very distinct egg production rates after long-term selection for egg and meat production respectively. Two-way subtraction was performed. The hepatic cDNA from the low egg production chickens (B) was subtracted from the hepatic cDNA from the high egg production strain (L2). The reversed subtraction (L2 from B) was also performed. The resulting differentially expressed gene fragments were cloned and sequenced. We sequenced 288 clones from the forward subtraction and 96 clones from the reverse subtraction. These genes were subjected to further screening to confirm the differential expression between the two genetic breeds of chickens. The apolipoprotein B (apoB) was expressed to a greater extent in the liver of the L2 than in the B line chickens. The 5-aminoimidazole- 4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (PURH) was expressed to a greater extent in the liver of the B than in the L2 strain chickens. We demonstrated that both apoB and PURH were more highly expressed in the liver than that in other tissues (muscle, ovary, and oviduct) in laying Taiwan Country chickens. Taken together, these data suggest that after the selection for egg production, expression of apoB and PURH genes were also changed. Whether the changed expression of these genes is directly related to egg production is not known, but these two genes may be useful markers for egg laying performance in Taiwan Country chickens.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes (C2C12 근관세포에서 상엽에 의한 AMPK의 불활성화와 AICAR로 유도된 근위축 억제의 연관성에 관한 연구)

  • Lee, Yu Sung;Kim, Hong Jae;Jeong, Jin-Woo;Han, Min-Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.435-443
    • /
    • 2018
  • AMP-activated protein kinase (AMPK) functions as a metabolic master through regulating and restoring cellular energy balance. In skeletal muscle, AMPK increases myofibril protein degradation through the expression of muscle-specific ubiquitin ligases. Mori Folium, the leaf of Morus alba, is a traditional medicinal herb with various pharmacological functions; however, the effects associated with muscle atrophy have not been fully identified. In this study, we confirmed the effects of AMPK activation by examining the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, on the induction of atrophy and expression of atrophy-related genes in C2C12 myotubes. We also investigated the effects of the ethanol extract of Mori Folium (EEMF) on the recovery of AICAR-induced muscle atrophy in C2C12 myotubes. It was found that exposure to AICAR resulted in the stimulation of Forkhead box O3a (FOXO3a); an up-regulation of muscle-specific ubiquitin ligases such as Muscle Atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and a down-regulation of muscle-specific transcription factors, such as MyoD and myogenin; with the activation of AMPK. In addition, AICAR without cytotoxicity indicated a decrease in diameter of C2C12 myotubes. However, treatment with EEMF significantly suppressed AICAR-induced muscle atrophy of C2C12 myotubes in a dose-dependent manner as confirmed by a decrease in myotube diameter, which is associated with a reversed stimulation of FOXO3a by the inhibition of AMPK activation. These results indicate that the activation of AMPK by AICAR induces muscle atrophy, and EEMF has preeminent effects on the inhibition of AICAR-induced muscle atrophy through the AMPK signaling pathway.