• Title/Summary/Keyword: 5 scenarios

Search Result 1,451, Processing Time 0.026 seconds

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.

Forward Collision Warning System based on Radar driven Fusion with Camera (레이더/카메라 센서융합을 이용한 전방차량 충돌경보 시스템)

  • Moon, Seungwuk;Moon, Il Ki;Shin, Kwangkeun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2013
  • This paper describes a Forward Collision Warning (FCW) system based on the radar driven fusion with camera. The objective of FCW system is to provide an appropriate alert with satisfying the evaluation scenarios of US-NCAP and a driver acceptance. For this purpose, this paper proposed a data fusion algorithm and a collision warning algorithm. The data fusion algorithm generates information of fusion target depending on the confidence of camera sensor. The collision warning algorithm calculates indexes and determines an appropriate alert-timing by using analysis results of manual driving data. The FCW system with the proposed data fusion and collision warning algorithm was investigated via scenarios of US-NCAP and a real-road driving. It is shown that the proposed FCW system can improve the accuracy of an alarm-timing and reduce the false alarm in real roads.

Korean Flood Vulnerability Assessment on Climate Change (기후변화에 따른 국내 홍수 취약성 평가)

  • Lee, Moon-Hwan;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.653-666
    • /
    • 2011
  • The purposes of this study are to suggest flood vulnerability assessment method on climate change with evaluation of this method over the 5 river basins and to present the uncertainty range of assessment using multi-model ensemble scenarios. In this study, the data related to past historical flood events were collected and flood vulnerability index was calculated. The vulnerability assessment were also performed under current climate system. For future climate change scenario, the 39 climate scenarios are obtained from 3 different emission scenarios and 13 GCMs provided by IPCC DDC and 312 hydrology scenarios from 3 hydrological models and 2~3 potential evapotranspiration computation methods for the climate scenarios. Finally, the spatial and temporal changes of flood vulnerability and the range of uncertainty were performed for future S1 (2010~2039), S2 (2040~2069), S3 (2070~2099) period compared to reference S0 (1971~2000) period. The results of this study shows that vulnerable region's were Han and Sumjin, Youngsan river basins under current climate system. Considering the climate scenarios, variability in Nakdong, Gum and Han river basins are large, but Sumjin river basin had little variability due to low basic-stream ability to adaptation.

An Analysis on the Expert Opinions of Future City Scenarios (미래도시 전망 분석)

  • Jo, Sung Su;Baek, Hyo Jin;Han, Hoon;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.3
    • /
    • pp.59-76
    • /
    • 2019
  • This study aims to develop urban scenarios for future cities and validate the future city scenarios using a Delphi method. The scenarios of future city was derived from urban structure, land use, transportation, and urban infrastructure and development using big data analysis, environmental scanning techniques, and literature review. The Delphi survey interviewed 24 erudite scholars and experts across 6 nations including Korea, USA, UK, Japan, China, Australia and India. The Delphi survey structure was designed to test future city scenarios, verified by the 5-point Likert scale. The survey also asked the timing of each scenario likely happens by the three terms of near-future, mid-future and far-future. Results of the Delphi survey reveal the following points. Firstly, for the future urban structure it is anticipated that urban concentration continues and higher density living in global mega cities near future. In the mid-future small and medium size cities may decrease. Secondly, the land use pattern in the near-future is expected of increasing space sharing and mixed or layered vertical land-use. In addition underground space is likely to be extended in the mid-future. Thirdly, in the near-future, transport and infrastructure was expected to show ICT embedded integration platform and public and private smart transport. Finally, the result of Delphi survey shows that TOD (Transit Oriented Development) becomes a development norm and more emphasis on energy and environment fields.

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.

Adjacent Interference Analysis between M-WiMAX OFDMA/TDD and WCDMA FDD System in the 2.6 GHz Band Part I : Adjacent Interference Analysis in SISO System (2.6 GHz 대역에서 M-WiMAX OFDMA/TDD 시스템과 WCDMA FDD 시스템간의 상호 간섭 분석 Part I : SISO 시스템에서의 상호 간섭 분석)

  • Ko, Sang-Jun;Wang, Yu-Peng;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.573-587
    • /
    • 2007
  • In this paper, we analyze the adjacent interference between WCDMA and M-WiMAX systems in the 2.6GHz Band under the SISO (Single Input Single Output) configuration. The interference scenarios are characterized into 8 scenarios with different victim and interfering links. Among the 8 scenarios, we find that the most performance loss is observed in the scenarios of victim uplink suffering interference from downlink in both systems. Besides, guard band is applied to mitigate the adjacent interference in all the scenarios. Especially, we reveal that M-WiMAX system is much more sensitive to adjacent interference than WCDMA system due to the lower transmission power. In this paper, we consider the worst interference environment, where interferers always transmit with the maximum power, a loose spectrum mask is adapted, and no additional channel fitters are equipped in both systems.

A Comparison of Predictive Power among SSP Scenarios of Oyster Aquaculture Production (SSP 시나리오별 굴 양식 생산량 예측력 비교)

  • Min-Gyeong Jeong;Jong-Oh Nam
    • The Journal of Fisheries Business Administration
    • /
    • v.54 no.1
    • /
    • pp.37-49
    • /
    • 2023
  • Climate change is a major global problem. Oysters, one of the most representative farmed fish in Korea, are attracting attention as candidates for blue carbon, an alternative to carbon neutrality. This study is analyzed by the SSP scenarios to determine the impact of oyster aquaculture production according to climate change. Based on the analysis, future productions of oysters are predicted by the SSP scenario. Significant differences by the SSP scenario are confirmed through predictive power tests among scenarios. Regression analysis was conducted from January 2001 to December 2014. As a result of the analysis, water temperature, water temperature quadratic term, salinity, salinity quadratic term, and month × water temperature cross term were estimated as significant variables. Oyster production which is predicted by the SSP scenario based on the significant variables from 2015 to 2022 was compared with actual production. The model with the highest predictive power was selected by RMSE and MAPE criteria. The predictive power was compared with the MDM test to determine which model was superior. As a result, based on RMSE and MAPE, the SSP1-2.6 scenario was selected as the best model and the SSP1-2.6, SSP2-4.5, and SSP3-7.0 scenarios all showed the same predictive power based on the MDM test. In conculusion, this study predicted oyster aquaculture production by 2030, not the distant future, due to the short duration of the analytical model. This study was found that oyster aquaculture production increased in all scenarios and there was no significant difference in predictive power by the SSP scenario.

Prediction of potential habitats and distribution of the marine invasive sea squirt, Herdmania momus

  • Park, Ju-Un;Lee, Taekjun;Kim, Dong Gun;Shin, Sook
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.179-188
    • /
    • 2020
  • The influx of marine exotic and alien species is disrupting marine ecosystems and aquaculture. Herdmania momus, reported as an invasive species, is distributed all along the coast of Jeju Island and has been confirmed to be distributed and spread to Busan. The potential habitats and distribution of H. momus were estimated using the maximum entropy (MaxEnt) model, quantum geographic information system (QGIS), and Bio-ocean rasters for analysis of climate and environment(Bio-ORACLE), which can predict the distribution and spread based only on species occurrence data using species distribution model (SDM). Temperature and salinity were selected as environmental variables based on previous literature. Additionally, two different representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were set up to estimate future and potential habitats owing to climate change. The prediction of potential habitats and distribution for H. momus using MaxEnt confirmed maximum temperature as the highest contributor(77.1%), and mean salinity, the lowest (0%). And the potential habitats and distribution of H. momus were the highest on Jeju Island, and no potential habitat or distribution was seen in the Yellow Sea. Different RCP scenarios showed that at RCP 4.5, H. momus would be distributed along the coast of Jeju Island in the year 2050 and that the distribution would expand to parts of the Korea Strait by the year 2100. RCP 8.5, the distribution in 2050 is predicted to be similar to that at RCP 4.5; however, by 2100, the distribution is predicted to expand to parts of the Korea Strait and the East Sea. This study can be utilized as basic data to effectively control the ecological injuries by H. momus by predicting its spread and distribution both at present and in the future.

Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios (RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석)

  • Bang, Jehong;Choi, Jin-Yong;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.

Estimation of Inflow into Namgang Dam according to Climate Change using SWAT Model (SWAT 모형을 이용한 기후변화에 따른 남강댐 유입량 추정)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.9-18
    • /
    • 2017
  • The objective of this study was to estimate the climate change impact on inflow to Namgang Dam using SWAT (Soil and Water Assessment Tool) model. The SWAT model was calibrated and validated using observed flow data from 2003 to 2014 for the study watershed. The $R^2$ (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. Calibration results showed that the annual mean inflow were within ${\pm}5%$ error compared to the observed. $R^2$ were ranged 0.61~0.87, RMSE were 1.37~7.00 mm/day, NSE were 0.47~0.83, and RMAE were 0.25~0.73 mm/day for daily runoff, respectively. Climate change scenarios were obtained from the HadGEM3-RA. The quantile mapping method was adopted to correct bias that is inherent in the climate change scenarios. Based on the climate change scenarios, calibrated SWAT model simulates the future inflow and evapotranspiration for the study watershed. The expected future inflow to Namgang dam using RCP 4.5 is increasing by 4.8 % and RCP 8.5 is increasing by 19.0 %, respectively. The expected future evapotranspiration for Namgang dam watershed using RCP 4.5 is decreasing by 6.7 % and RCP 8.5 is decreasing by 0.7 %, respectively.