• Title/Summary/Keyword: 5 scenarios

Search Result 1,385, Processing Time 0.027 seconds

Variance Analysis of RCP4.5 and 8.5 Ensemble Climate Scenarios for Surface Temperature in South Korea (우리나라 상세 기후변화 시나리오의 지역별 기온 전망 범위 - RCP4.5, 8.5를 중심으로 -)

  • Han, Jihyun;Shim, Changsub;Kim, Jaeuk
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • The uncertainty of climate scenarios, as initial information, is one of the significant factors among uncertainties of climate change impacts and vulnerability assessments. In this sense, the quantification of the uncertainty of climate scenarios is essential to understanding these assessments of impacts and vulnerability for adaptation to climate change. Here we quantified the precision of surface temperature of ensemble scenarios (high resolution (1km) RCP4.5 and 8.5) provided by Korea Meteorological Administration, with spatiotemporal variation of the standard deviation of them. From 2021 to 2050, the annual increase rate of RCP8.5 was higher than that of RCP4.5 while the annual variation of RCP8.5 was lower than that of RCP4.5. The standard deviations of ensemble scenarios are higher in summer and winter, particularly in July and January, when the extreme weather events could occur. In general, the uncertainty of ensemble scenarios in summer were lower than those in winter. In spatial distribution, the standard deviation of ensemble scenarios in Seoul Metropolitan Area is relatively higher than other provinces, while that of Yeongnam area is lower than other provinces. In winter, the standard deviations of ensemble scenarios of RCP4.5 and 8.5 in January are higher than those of December. Especially, the standard deviation of ensemble scenarios is higher in the central regions including Gyeonggi, and Gangwon, where the mean surface temperature is lower than southern regions along with Chungbuk. Such differences in precisions of climate ensemble scenarios imply that those uncertainty information should be taken into account for the implementation of national climate change policy.

Development of Reference Scenarios Based on FEPs and Interaction Matrix for the Near-surface LILW Repository

  • Lee, Dong-Won;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.539-546
    • /
    • 2001
  • Systematic procedure of developing radionuclide release scenarios was established based on FEP list and Interaction Matrix for near-surface LILW repository. FEPs were screened by experts'review in terms of domestic situation and combined into scenarios on the basis of Interaction Matrix analysis. Under the assumption of design scenario, The system domain was divided into three sections: Near-field, Far-field and Biosphere. Sub-scenarios for each section were developed, and then scenarios for entire system were built up with sub-scenarios of each section. Finally, sixteen design scenarios for near-surface repository were evaluated A reference scenario and other noteworthy scenarios were selected through experts'scenario screening.

  • PDF

Safety Performance Evaluation Scenarios for Extraordinary Service Permission of Autonomous Vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Chae, Heungseok;Jeong, Yonghwan;Yi, Kyongsu;Choi, Inseong;Min, Kyongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.495-503
    • /
    • 2016
  • Regulation for the testing and operation of autonomous vehicles on public roadways has been recently developed all over the world. For example, the licensing standards and the evaluation technology for autonomous vehicles have been proposed in California, Nevada and EU. But specific safety evaluation scenarios for autonomous vehicles have not been proposed yet. This paper presents safety evaluation scenarios for extraordinary service permission of autonomous vehicles on highways. A total of five scenarios are selected in consideration of safety priority and real traffic situation. These scenarios are developed based on existing ADAS evaluation and simulation of autonomous vehicle algorithm. Also, Safety evaluation factors are developed based on ISO requirements, other papers and the current traffic regulations. These scenarios are investigated via computer simulation.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Safety Assessment Scenarios for Cyclist AEB (자전거 대상 자동비상제동장치의 성능평가 시나리오 개발)

  • Kim, Taewoo;Yi, Kyongsu;Lee, EunDok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.13-19
    • /
    • 2017
  • This paper presents safety assessment scenarios for cyclist autonomous emergency braking(AEB) system. To assess the safety performance of AEB in real traffic situation with limited number of scenarios, scenario should reflect the characteristics of real traffic collision cases. For this, statistic data of real traffic car-to-cyclist collision in Korea are analyzed. Many types of accidents are listed and categorized based on the movement of vehicle and cycle just before the collision. Then, the characteristics, main issues and limitations of each scenarios are discussed. Not only the test scenario itself but also the cost and time for the test are very important issues for the test scenarios to actually repeat the test for various systems. Also, the performance of AEB can be effected by the algorithm of AEB and the technical limitation of the sensors and hardwares. Therefore, required number of tests, possibility of dummy destruction and other technical issues are discussed for each scenarios. Based on these information, typical scenarios are selected. Also, using this information, vehicle speed range, cyclist speed and collision point are established. Proposed scenarios are verified and modified based on the vehicle test results. vehicle test was evaluated 5 times for each scenarios. Based on this results, final test scenarios are modified and proposed.

Typical Pseudo-accident Scenarios in the Petrochemical Process (석유화학 공정의 가상사고 시나리오 유형분석)

  • 윤동현;강미진;이영순;김창은
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.75-80
    • /
    • 2003
  • This paper presents a set of typical pseudo-accident scenarios related to major equipments in petrochemical plants, which would be useful for performing such quantitative risk analysis techniques as fault tree analysis, event tree analysis, etc. These typical scenarios address what the main hazard of each equipment might be and how the accident might develop from an "initiating event". The proposed set of accident scenarios consists of total thirteen (13) scenarios specific for five (5) major equipments like reactor, distillation column, etc., and has been determined and screened out of one hundred and twenty-five (125) potential accident scenarios that were generated by performing semi-quantitative risk analysis practically for twenty-five (25) petrochemical processes, considering advices from the operation experts. It is assumed that with simple consideration or incorporation of plant-specific conditions only, the proposed accident scenarios could be easily reorganized or adapted for the relevant process with less time and labor by the safety engineers concerned in the petrochemical industries.ndustries.

Projection of 21st Century Climate over Korean Peninsula: Temperature and Precipitation Simulated by WRFV3.4 Based on RCP4.5 and 8.5 Scenarios (21세기 한반도 기후변화 전망: WRF를 이용한 RCP 4.5와 8.5 시나리오 기온과 강수)

  • Ahn, Joong-Bae;Choi, Yeon-Woo;Jo, Sera;Hong, Ja-Young
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.541-554
    • /
    • 2014
  • Historical, RCP4.5 and RCP8.5 scenarios from HadGEM2-AO are dynamically downscaled over the northeast East Asia with WRFV3.4. The horizontal resolution of the produced data is 12.5 km and the periods of integration are 1979~2010 for historical and 2019~2100 for both RCP4.5 and RCP8.5. We analyze the time series, climatology, EOF and extreme climate in terms of 2 m-temperature and precipitation during 30-year for the Historical (1981~2010) and RCP4.5 and RCP8.5 (2071~2100) scenarios. According to the result, the temperature of the northeast Asia centered at the Korean Peninsula increase 2.9 and $4.6^{\circ}C$ in the RCP4.5 and RCP8.5 scenarios, respectively, by the end of the 21st century. The temperature increases with latitude and the increase is larger in winter rather than in summer. The annual mean precipitation is expected to increase by about $0.3mm\;day^{-1}$ in RCP4.5 scenario and $0.5mm\;day^{-1}$ in RCP8.5 scenario. The EOF analysis is also performed for both temperature and precipitation. For temperature, the EOF $1^{st}$ modes of all scenarios in summer and winter show that temperature increase with latitude. The $2^{nd}$ mode of EOF of each scenario shows the natural variability, exclusive of the global warming. The summer precipitation over the Korean Peninsula projected increases in EOF $1^{st}$ modes of all scenarios. For extreme climate, the increment of the number of days with daily maximum temperature above $30^{\circ}C$ per year ($DAY_{TX30}$) is 25.3 and 49.7 days in RCP4.5 and RCP8.5 respectively over the Korean Peninsula. The number of days with daily precipitation above $20mm\;day^{-1}$ per year ($DAY_{PR20}$) also increases 3.1 and 3.5 days in RCP4.5 and RCP8.5 respectively.

Spatiotemporal distribution of downscaled hourly precipitation for RCP scenarios over South Korea and its hydrological responses

  • Lee, Taesam;Park, Taewoong;Park, Jaenyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.247-247
    • /
    • 2015
  • Global Climate Model (GCM) is too coarse to apply at a basin scale. The spatial downcsaling is needed to used to permit the assessment of the hydrological changes of a basin. Furthermore, temporal downscaling is required to obtain hourly precipitation to analyze a small or medium basin because only few or several hours are used to determine the peak flows after it rains. In the current study, the spariotemporal distribution of downscaled hourly precipitation for RCP4.5 and RCP8.5 scenarios over South Korea is presented as well as its implications over hydrologica responses. Mean hourly precipitation significantly increases over the southern part of South Korea, especially during the morning time, and its increase becomes lower at later times of day in the RCP8.5 scenario. However, this increase cannot be propagated to the mainland due to the mountainous areas in the southern part of the country. Furthermore, the hydrological responses employing a distributed rainfall-runoff model show that there is a significant increase in the peak flow for the RCP8.5 scenario with a slight decrease for the RCP4.5 scenario. The current study concludes that the employed temporal downscaling method is suitable for obtaining the hourly precipitation data from daily GCM scenarios. In addition, the rainfall runoff simulation through the downscaled hourly precipitation is useful for investigating variations in the hydrological responses as related to future scenarios.

  • PDF

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Design Flood Estimation in the Hwangguji River Watershed under Climate and Land Use Changes Scenario (기후변화 및 토지이용변화 시나리오를 고려한 황구지천 유역의 설계홍수량 평가)

  • Kim, Jihye;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • Extreme floods occur more often recently as the frequency of extreme storm events increase due to the climate change. Because the extreme flood exceeding the design flood can cause large-scale disasters, it is important to predict and prepare for the future extreme flood. Flood flow is affected by two main factors; rainfall and land use. To predict the future extreme flood, both changes in rainfall due to the climate change and land use should be considered. The objective of this study was to simulate the future design flood in the Hwangguji river watershed, South Korea. The climate and land use change scenarios were derived from the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. Conversion of land use and its effects (CLUE) and hydrologic modelling system (HEC-HMS) models were used to simulate the land use change and design flood, respectively. Design floods of 100-year and 200-year for 2040, 2070, and 2100 under the RCP4.5 and 8.5 scenarios were calculated and analyzed. The land use change simulation described that the urban area would increase, while forest would decrease from 2010 to 2100 for both the RCP4.5 and 8.5 scenarios. The overall changes in design floods from 2010 to 2100 were similar to those of probable rainfalls. However, the impact of land use change on design flood was negligible because the increase rate of probable rainfall was much larger than that of curve number (CN) and impervious area.