• Title/Summary/Keyword: 5 L reactor

Search Result 728, Processing Time 0.035 seconds

Effect of Copper on the Suspended Growth Biological Wastewater Treatment (부유 성장식 생물학적 폐수처리에 미치는 구리의 영향)

  • Seo, Jeong-Beom;Hwang, Chang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.479-484
    • /
    • 2013
  • This study was performed to examine the effect of copper on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A_2/O$). The results of this study can be summarized as follows. In the case of the effect of copper on organic treatment, the bad effect initiated when it was above 4.5 mg/L copper with batch reactor and above 2.0 mg/L copper with CSTR. Concerning the case on nitrification and removal of nitrogen, it showed bad effect when copper was above 4.5 mg/L with batch reactor for nitrification and 1.0 mg/L with CSTR for the removal of nitrogen. The bad effect on the removal of phosphorus began when it was 4.5 mg/L copper with batch reactor and 2 mg/L copper with CSTR. In the case of OUR, it decreased as microbial activity was affected when copper concentration was above 1.5 mg/L in both case of batch reactor and CSTR.

Potentiometric Determination of L-Malate Using Ion-Selective Electrode in Flow Injection Analysis Syste

  • Kwun, In-Sook;Lee, Hye-Sung;Kim, Meera
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.79-83
    • /
    • 1999
  • A potentiometric biosensor employing a CO3-2 ion-selective electrode(ISE) and malic enzyme immobilization in al flow injection analysis (FIA) system was constructed. Analytical parameters were optimized for L-malate determination . The CO3-2 -ISE-FIA system was composed of a pump, an injector, a malic enzyme (EC1.1.1.40) reactor, a CO3-2 ion-selective electrode, a pH/mV meter and a recorder. Cofactor NADP was also injected with substrate for theenzyme reaction into the system. Optimized analytical parameters for L-malate determination in the CO3-2 ISE-FIA system were as follows ; flow rate, 14.5ml/hr ; sample injection volume, 100ul; enzyme loading in the reactor, 20 units ; length of the enzyme reactor , 7 cm ; tubing length form the enzyme reactor to the detector as a geometric factor in FIA, 15 cm . The response time for measuring the entire L-malate concentration range (10-2 ~10-5 mol/L ; 4 injections )was <15minutes . In this CO3-2 -ISE-FIA system, the potential differences due to th eformation of CO3-2 by the reaction of malic enzyme on L-malate were correlated to L-malate concentration in the range of 10-2 ~10-5mol/L ; the detection limit was 10-5 mol/L. This potentionmetric CO3-2 ISE--FIA system was found to be useful for L-malate measurement.

  • PDF

Advanced Wastewater Treatment Using Anoxic-Aerobic Reactor Filled with Porous Media (다공성 미디어를 충진한 혐기-호기 반응조를 이용한 하수고도처리에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • A biological anoxic-aerobic reactor filled with porous media was operated in lab scale for the advanced wastewater treatment. The experiments were conducted for 6 months with three HRTs (4, 6, 8hr) and temperature of $23{\sim}25^{\circ}C$. Some other experimental conditions were as follows; nitrification reactor (MLSS 4,500mg/L, DO 3.3mg/L, $23{\sim}28^{\circ}C$), denitrification reactor(MLSS 8,000mg/L, ORP -100mV, Temp.$19{\sim}23^{\circ}C$). Average removal efficiencies of SS, $BOD_5$, $COD_{Cr}$, T-N, and T-P were 97.8%, 95.5%, 94.5%, 80.2%, and 60.6%, respectively. The reactor filled with porosity media showed stable removal capacity for organics and nutrients. Fast and complete nitrification and denitrification were accomplished. Maintaining high MLSS with porous media in the nitrification and denitrification reactor appears to enhance the nitrogen removal process. For the higher T-P removal, some coagulant addition process will be needed.

Estimation of Cattle Wastewater Treatment using Singang Advance Biology Reactor (SAB) (SAB 고율미생물반응기를 이용한 축산폐수처리의 성능 평가)

  • Lim, Bongsu;Kim, Doyoung;Park, Sungsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.727-734
    • /
    • 2009
  • This study was carried out to evaluate the high rate biological reactor such as lab scale reactor before the application in site, and to get the basic data for possibility using liquid fertilizer with the effluent from biological reactor when the centrifugal machine was applied. The total volume of this reactor in 6 L, in composted of anoxic reactor (2 L), aerobic reactor (2 L), and nitification reactor (2 L). BOD removal efficiency rates when centrifugal machine was applied after effluent from biological reactor are over than 95%. This biological reactor was required post process to satisfy the effluent standards, and was need centrifugal machine to control the washout of microbes in the reactor. T-N removal efficiency rate in HRT 24 hr with centrifugation is 80.0%, and it is desirable to operate less than $1.3kgN/m^3{\cdot}d$ for 70% of T-N removal efficiency rate. T-P removal efficiency rate in HRT 24 hr is 68.2%, and become higher 71.3% after centrifugation. Considering in the 28.6% T-N removal efficiency rate, the nitrogen contents of the effluent from reactor is 0.34% to satisfy the liquid fertilizer.

Effects of Polyurethane as Support Material for the Methanogenic Digester of a Two-Stage Anaerobic Wastewater Digestion System

  • Woo, Kyung-Soo;Yang, Han-Chul;Lim, Wang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • To increase the efficiency of a two-stage anaerobic wastewater digestion system, various polymers were added to the methanogenic reactor as supports. The addition of polyurethane addition (6%, w/v) to the methanogenic reactor facilitated the organic loading rate (2-day Hydraulic Retention Time), higher than that of the conventional methanogenic reactor (6-day HRT). During the operation of the polyurethane-added reactor, a significant decrease in the organic mass in the effluent (COD 5-6 kg/l) was achieved, compared to that of the conventional reactor (COD 15-20 kg/l). The methane gas production rate also improved about 3-fold in the polyurethane-added reactor. More biomass was found to accumulate in the polyurethane-liquid phase (volatile solid, 26-28kg) than in the free-liquid phase (volatile solid, 5- 7 kg/l) after 90 days of operation. A scaled-up experiment with a polyurethane-added 2.5-1 reactor confirmed the previous results, and no adverse effects such as plugging or channeling due to decreased efficiency was observed even after 4 months of operation.

Bioreactor Cultures of Lithospermum erythrorhizon for Shikonin Production with In Situ Extraction (동시 추출을 겸한 생물반응기에서 Lithospermum erythrorhizon 배양에 의한 shikonin 생산)

  • 김동진;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.525-529
    • /
    • 1990
  • Plant cell cultures of Lithospermum erythrorhizon were performed in stirred tank and packed-bed reactors with in situ extraction by n-hexadecane. The specific shikonin production and volumetric shikonin productivity of stirred tank reactor reached 1.5 mg shikoninlg cell and 400$\mu g$ shikonin/(L.day), respectively. In packed-bed reactor with calcium alginate-immobilized cells specific shikonin production and volumetric productivity reached 2.0 mg shikoninlg cell and 2857$\mu g$ shikonin/(L.day), which were 1.3 and 7.1 times higher than those of stirred tank reactor, respectively. The higher shikonin production and productivity of packed-bed reactor seemed to be due to high cell loading capacity of calcium alginate immobilized cells in packed-bed reactor and improved cell-cell contact.

  • PDF

Continuous Production of Agarooligosaccharides Using Packed-Bed Reactor (Packed-Bed 반응기를 이용한 한천올리고당의 연속생산)

  • 임동중;김종덕;강양순;공재열
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.398-402
    • /
    • 2001
  • Enzymatic hydrolysis of agar was carried out continuously to produce agarooligosaccharides by immobilized agarase in Packed-Bed Reactor. The reactor was constructed using a acryl tube with an internal diameter of 10 mm and a useful height of 140 mm. The Packed-Bed Reactor was 11 mL reactor volume as its length : diameter ratio was 14 : 1. The operation condition of reaction was performed with an 1 g/L agar concentration at 40$^{\circ}C$, 10 mM MOPS buffer(pH 7.0) and with the flow rate 3 mL∼48 mL/h at a dilution rate of 1.09∼5.45 h$\^$-1/. The hydrolysis products was identified DP6, DP4 and DP2 by HPLC. The conversion rate of agar was about 80% and amount of total agarooligosaccharide was 0.88 mg/mL at Packed-Bed Reactor.

  • PDF

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF

Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media (통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.116-124
    • /
    • 2022
  • In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.

Phosphorus Removal and Operating Performance of Mesh Filtration Bio-reactor with the Addition of Alum (Alum 주입 메쉬 침지 여과분리형 생물반응조의 운전 특성과 인 제거)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.458-463
    • /
    • 2005
  • Considering the characteristics of a filtration bio-reactor equipped with a mesh filter module which can effectively maintain high concentration of biomass and enhanced solid-liquid separation performance, the hybrid process of filtration bio-reactor combined with coagulation was investigated to get improved filtration characteristics as well as water quality in this work. Two bio-reactors (Run-1 & Run-2) were operated under the following conditions: working volume of 25 L, continuous loading of a synthetic wastewater (BOD: 200 mg/L, T-N: 50 mg/L, T-P: 5 mg/L), where an appropriate amount of alum ($Al_2(SO_4)_3{\cdot}18H_2O$) was added once a day into the reactor (Run-2). In the system without using a alum (Run-1), the clogging of mesh filter module was observed two times through 85 days of whole operation. Meanwhile, the filter module did not clog even at higher MLSS concentration (6,000~12,000 mg/L) and the stable filtration (0.7 mid) was continued in the case of using a alum. Due to the stable formation of cake layers, BOD and SS were shown below 6 and 3 mg/L, respectively. T-P and pH of the effluent were changed because of the intermittent addition of the alum. In the case of Al/P=2.5, the average T-P removal efficiency per day was 85.2% and the average T-P concentration of the effluent was 0.3 mg/L. However, the removal efficiency of phosphate was influenced by pH in the reactor.