• Title/Summary/Keyword: 5 Force Model

Search Result 1,109, Processing Time 0.027 seconds

A Study on the System Identification for Detection of Tool Breakage (공구파손검출을 위한 시스템인식에 관한 연구)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.144-149
    • /
    • 2000
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

Design of Low Pressure Driven Soft Actuators for Soft Gripper (소프트 그리퍼를 위한 저압 구동 소프트 액추에이터의 설계)

  • Yoon, Jingon;Yun, Dongwon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • The gripper with a soft pneumatic actuator uses a soft material, unlike the gripper that uses a rigid body, so it is safer and lighter to interact with objects without advanced control technology. Among the soft pneumatic actuators that have been studied, PneuNets actuators have bellows shape, which enable quick operation and complete bending with only small material deformation at low pressure. In this study, we suggested improved form of PneuNets actuators to obtain the performance of the soft actuator that a larger bending angle and larger bending force at a small pressure. An experiment was designed and conducted to measure the bending angle and bending force according to the pressure. As a result, it was confirmed through experiments that the improved model has a maximum bending angle at a pressure of 5 kPa lower than that of the previous model, and a maximum bending force of 1.97 times at the same pressure.

Comparative Study of Needle Sensations in $ST_{36}$ and 6 Models with Quantifying Measurement System (정량적 측정 시스템을 이용한 족삼리와 6가지 모델의 침감 비교 연구)

  • Han, Ye Ji;Jo, Su Jeong;Son, Young Nam;Lee, Soo Yoon;Kim, Kap Sung;Lee, Seung Deok
    • Journal of Acupuncture Research
    • /
    • v.30 no.5
    • /
    • pp.87-94
    • /
    • 2013
  • Objectives : In this study, we intended to make the foundation of the development of acupuncture tissue model as comparing the needle sensation of six kinds of tissue models and Zusanli ($ST_{36}$) with the needle force measurement system. Methods : When practitioners did twisting-rotating acupuncture needle manipulation after inserting the needle into six kinds of tissue models, they quantified the similarity sense to the sensation of Zusanli ($ST_{36}$) with the NRS (Numeric Rating scale). As needle force measurement system did twisting-rotating Acupuncture needle manipulation after inserting needle into Zusanli ($ST_{36}$) of human and six kinds of tissue models, it can calculate the coefficient of viscosity by measuring the torsion friction. We compare the NRS of practitioners' needle sensation to the coefficient of viscosity of needle force measurement systems. Result : As practitioners' NRS assessment to quantify needle sensation, apple and cucumber showed 70% similarity to Zusanli ($ST_{36}$). As needle force measurement system's coefficient of viscosity, apple and cucumber's coefficient of viscosity were similar to Zusanli ($ST_{36}$)'s. Conclusions : In this study, We compared the practitioners' needle sensation of Zusanli ($ST_{36}$) and six kinds of tissue models with needle force measurement system that can quantify the needle sensation. As the result, we concluded that practitioners' needle sensation is similar to measured needle sensation. It seems that the acupuncture practice model implementing the needle sensation to specific acupuncture points can be built based on the system in this study.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Hydraulic Pumps Driven by Multilayered Piezoelectric Elements -Mathematical Model and Application to Brake Device -

  • Konishi, Katunobu;Ukida, Hiroyuki;Sawada, Koutarou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, we present a mathematical model of the piezoelectric pump and its application to the automobile brake system. The piezoelectric pump consists of a multi-layered piezoelectric element a diaphragm, pumping values, resonant pipes and accumulators, and the maximum pumping power of 62W nab obtained in the previous experiments by using the piezoelectric element of 22mm diameter and 55.5mm length. A detailed mathematical model of the pump is derived here by considering the compressibility of the working oil, nonlinear characteristics of piezoelectric element, the time delay of pumping values' action and be on. The validity of the model is illustrated by comparing the experimental data and the simulation results. Using the mathematical model of the piezoelectric pump, a brake system for automobile disk brake is also simulated in this paper. The brake system consists of a piezoelectric pump as a power source, calipers and its piston to generate brake force, and a three position solenoid value to change the brake situation. It is shown that 15mm/sec of piston speed and 20kN of piston force are obtained by using the piezoelectric element of 33mm diameter and 55.5mm length.

  • PDF

A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow (고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구)

  • 송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.

Effect of prestressing force on natural frequency of a prestressed concrete beam (PSC보의 긴장력이 고유진동수에 미치는 영향)

  • Choi, Sanghyun
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.2
    • /
    • pp.124-137
    • /
    • 2009
  • The research on the effect of the prestressing force on the frequency of PSC(Prestressed Concrete beam) has been conducted theoretically and experimentally, and a few theory has been presented. However, the presented theories show no agreement in predicting the effect of the prestressing force. In this paper, the theories on the effect of the prestressing force on the frequency of PSC beam are presented and evaluated using the experimental result. To obtain the experimental result, two PSC beam specimens were manufactured, and the modal test and analysis were performed. The modal analysis results revealed that the prestressing force increased the natural frequency of the PSC beam. Comparing predicted results using existing theories show that Kim's model, which substitutes the prestressing tendon with the equivalent beam, gives the best prediction result.

  • PDF

The Improvement of Performance in an Ultra small Camera Iris-Shutter Device using Topology Optimization (최적화 기법을 사용한 초소형 카메라 조리개 셔터장치의 성능향상)

  • Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • This study is concerned with the design of a camera iris-shutter device for producing force. The camera iris-shutter with yoke should have a smaller size and a bigger magnetic force than the previous model. Since the induced magnetic force operates shutter movement, the magnetic force maximization for a given input current is an important issue. To achieve the goal, new system is designed by the topology optimization method. The design is refined through the design of experiments to find the detail camera iris shutter design satisfying design constraints.

  • PDF

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

Unified solutions for piezoelectric bilayer cantilevers and solution modifications

  • Wang, Xianfeng;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.759-780
    • /
    • 2015
  • Based on the theory of piezoelasticity, the static performance of a piezoelectric bilayer cantilever fully covered with electrodes on the upper and lower surfaces is studied. Three models are considered, i.e., the sensor model, the driving displacement model and the blocking force model. By establishing suitable boundary conditions and proposing an appropriate Airy stress function, the exact solutions for piezoelectric bilayer cantilevers are obtained, and the effect of ambient thermal excitation is taken into account. Since the layer thicknesses and material parameters are distinguished in different layers, this paper gives unified solutions for composite piezoelectric bilayer cantilevers including piezoelectric bimorph and piezoelectric heterogeneous bimorph, etc. For some special cases, the simplifications of the present results are compared with other solutions given by other researches based on one-dimensional constitutive equations, and some amendments have been found. The present investigation shows: (1) for a PZT-4 piezoelectric bimorph, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are about 19.59%, 23.72% and 7.21%, respectively; (2) for a PZT-4-Al piezoelectric heterogeneous bimorph with constant layer thicknesses, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are 9.85%, 11.78% and 4.07%, respectively, and the amendments of the electrode charges induced by an end shear force or an end moment are both 1.04%; (3) for a PZT-4-Al piezoelectric heterogeneous bimorph with different layer thicknesses, the maximum amendment of tip deflection approaches 23.72%, and the maximum amendment of electrode charge approaches 31.09%. The present solutions can be used to optimize bilayer devices, and the Airy stress function can be used to study other piezoelectric cantilevers including multi-layered piezoelectric cantilevers under corresponding loads.