• Title/Summary/Keyword: 5축 머시닝센터

Search Result 9, Processing Time 0.029 seconds

A Development of a 5 Axis Double Column Type Mchining Center (I) (문형5축 머시닝센터 개발에 대한 연구(I))

  • 이시다
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.202-206
    • /
    • 1997
  • 항공기 부품, 터빈형 임펠라나 브레이드, 자동차나 가전제품용의 대형금형류의 정밀가공과 생산성 향상에는 5축의 NC가공이 기존 3축의 NC 가공보다 많은 이점을 갖고 있다. 제1차 선도기술개발사업을 통해 C 형의 5축머시닝센터를 성공적으로 개발한 실적을 바탕으로 제2차 선도기술개발사업을 통해 작업이송거리 12,000*3,500*1,500(X*Y*Z), 위치정밀도 $\pm0.005mm/M$, 주축동력 30/45Kw의 대형, 강력, 정밀형의 문형5축머시닝센터 개불을 목표로 추진하고 있다.

  • PDF

Development of a Geometric Error Analysis and Virtual Manufacturing System for Gantry-Type 5-Axis Machining Centers (문형 5축 머시닝센터의 기하학적 오차해석 및 가상가공 시스템 개발)

  • 윤태선;조재완;김석일;곽병만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.172-179
    • /
    • 1998
  • To quickly determine the effect of the substitute component on the machine's performance is very important in the design and manufacturing processes. And minimizing machine cost and maximizing machine quality mandate predictability of machine accuracy. In this study, in order to evaluate the effects of the component's geometric errors and dimensions on the machining accuracy of gantry-type 5-axis machining centers, a geometric error analysis and virtual manufacturing system are developed based on the mathematical model for the shape generation motion of machine tool considering the component's geometric errors and dimensions, the solid modeling techniques and so on.

  • PDF

문형 5축 머시닝센터의 기하학적 오차해석 및 가상가공 시스템 개발

  • 윤태선;조재완;곽병만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.830-835
    • /
    • 1995
  • To quickly determine the effect of the substitute component on the machine's performance is very important in the defign and the manufacturing processes. And minimizing machine cost and maximizing machine quality mandata predictability of machine accuracy. In the study, in order to evaluate the effects of the component's geometric errors and dimensions on the machining accuracy of gantry-type 5-axis machining centers, a geometric error analysis and virtual manufacturing system is developed based on the mathematical model for the shape generation motion of machine tool considering the component's geometric errors and dimensions, the solid modeling techniques and so on.

  • PDF

Lightweight of Movable Parts for Energy Reduction of 5-axis Machining Center (5축 머시닝센터의 소비 에너지 저감을 위한 운동요소 경량화)

  • Lee, Myung Gyu;Nam, Sung Ho;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.474-479
    • /
    • 2013
  • Mass reduction of the machine tool movable parts is a tool for achieving lower energy demands of the machine tool operation. The realization of lightweight design in machine tool can be achieved by structural lightweight design and material lightweight design. In this study, topology optimization strategy was applied to design optimized structures of movable parts of 5 axis machining center. The weight of ram which has most significant influence on the stiffness of whole machine tool was reduced without stiffness deterioration. The redesigned optimized ram has 24.2% less weight while maintaining the same displacement caused by cutting force.

Design of a Machine Tool containing a 3-strut Parallel Kinematic Structure (병렬구조 머시닝센터 설계기술)

  • Kim, Tae-Jung;Kim, Suk-Il;Nah, Seung-Pyo;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.878-885
    • /
    • 2011
  • A kinematically-hybrid 5-axis machine tool is analyzed from the perspective of machine tool design. Its kinematic characteristics are pointed out, which should be considered during the conceptual design process. A result of the structural analysis of the machine is presented, which is performed during the detailed design process. It is also presented how we improve the thermal characteristics of the machine tool by changing the installation position of the actuators.

Machine Tool Technology;The Present And The Future(2) (공작기계기술의 현재와 미래(2))

  • Kahng, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.5-17
    • /
    • 1995
  • 기술과 과학이 끊임없이 발달되고 있는 가운데 생산기술과 생산공업도 비약적으로 발달되고 있다. 공작기계에 대한 요구사항은 일반적으로 고정도화, 고속도화 그리고 고능률화 나아가서는 자동화이다. 다시 말해서 더욱 좋은 품질(고정도화)과 저렴한 가격(고능률화)의 제품을 빨리 사용자에게 공급(고속화)할 수 있고, 다양한 제품을 만들 수 있는 공작기계가 요구되는 것이다. 고능률화 또는 고속화를 위해서는 고속절삭가공을 실현해야하며 그러기 위해서는 Spindle(주축)의 회전수를 높이고 각 축의 이송 속도가 빨라야 되며 절삭 이송을 고속화하여야 한다. 그리고, 머시닝센터에서는 공구를 자동으로 교환하는(ATC)을 신속히 해야 한다. 이와 같은 고속 공작기계에 대한 요구는 점점 많아지고 있으며 공작기계전시회가 열릴때마다 고속도화는 점점 진전되고 있다. 최근에는 주축의 회전수가 10,000$min^{-1}$은 보통이고 최고 40,000$min^{-1}$이상에 도달하고 있다.

  • PDF

The Evaluation of Performance of 2-Axis Polishing Robot Attached to Machining Center (머시닝센터 장착형 2축 연마 로봇의 성능평가)

  • 박준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing process, a polishing robot with w degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, a new sliding mode control algorithm is applied to the robot. The signal compression method is used to identify polishing robot system. to obtain an effect of 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 axes machining center is divided into data of two types for 3 axes machining center and 2 axes polishing robot. To evaluate polishing performance of the robot. various experiments are carried out.

  • PDF

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.