• Title/Summary/Keyword: 5,6,7-Trimethoxyflavone

Search Result 7, Processing Time 0.537 seconds

Polyoxygenated Flavones; Synthesis, Cytotoxicities and Antitumor Activity against ICR Mice Carrying S-180 Cells

  • Song, Gyu-Yong;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.440-448
    • /
    • 1995
  • Fitty two flavones were synthesized from polyoxygenated dibenzoylmethanes which were obtained by a modified Baker-Venkatarman rearrangement, of 2-benzoyl oxyacetophenones. The following flavones among them showed good cytotoxic activities against L1210 and HL60 cells ; 2'-benzoyloxy-5,7-dimethoxyflavone $(8.2{\mu}g/ml,{\;}5.0 {\mu}g/ml)$, 2'-benzyloxy-5,7,8-trimethoxyflavone $(5,9 {\mu}g/ml,{\;}11.0{\mu}g/ml,{\;}2.7{\mu}g/ml)$, 2'-hydroxy-5,7,8-trimethoxyflavone $(9.8{\mu}/ml,{\;}6.2{\mu}g/ml)$, 2'-benzyloxy-5-hydroxyflavone $(5.2 {\mu}g/ml,{\;}3.6{\mu}g/ml)$, and 5,2'-dihydroxyflavone $(5.1{\mu}g/ml,{\;}4.0{\mu}g/ml)$. Presence of 5-methoxy group potentiated the cytotoxic activity, while the existence of 7-methoxy group decreased the activity. 5-Hydroxy or methoxy activates 4-carbonyl group, while 7-methoxy group deactivates the acrbonyl group. From these observation it was concluded that the activation of carbonyl group at C-4 of a flavone is important for the enahncement of the cytotoxic activity. The presence of both 5-hydroxy and 2-benzyloxy-or 2-hydroxy group enhanced the antitumor activity; 2'-benzyloxy-5-hydroxy-7-methoxyflaone 9T/C=144%), 5.2'-dihydroxy-7-methoxyflavone (T/C=132%) and 5,2'-dihydroxy-6,78,6' trtramethoxyflvone (T/C = 172%) 2'hexanolytion of 5,2'-dihydroxy-flavones did not improve the natitumor activity; 2' hexanoyloxy-5-hydroxy-7-methoxyflavone showed T/C = 132%, about the same as that of 5,2'-dihydroxy-7-methoxyflvone (T/C=130%)

  • PDF

Cytotoxic Activities of some Geranylated Flavones against L1210 Cell (L1210세포에 대한 제라닐화 후라본의 세포독성)

  • Baik, Kyeong-Up;Ahn, Byung-Zun
    • YAKHAK HOEJI
    • /
    • v.32 no.2
    • /
    • pp.125-128
    • /
    • 1988
  • Geranylation of some synthetic and natural flavones have yielded cytotoxic products against L1210 coll; 5,2´-dihydroxy-6,7,8-trimethoxy-6´-geranyloxyflavone 4$(8.5{\mu}g/ml)$, 5,6-dihydroxy-7-gerenyloxyflavone 9$(2.3{\mu}g/ml)$. 2 has showed the same range of cytotoxicity as the starting material, 5,2´-dihydroxy-6,7,8-trimethoxy-6´-benzyloxyflavone$(17.0{\mu}g/ml)$. The cytotoxicity of 4 was lower than its starting substance, 5,2´,6´-trihydroxy-6,7,8-trimethoxyflavone $(4.5{\mu}g/ml)$. On geranylating 5,6,7-trihydroxyflavone(baicalein, $15.0{\mu}g/ml$) the cytotoxic activity has been strongly potentiated($2.3{\mu}g/ml$ of 9). The presence of at least a free hydroxy group in B-ring of Skullkapflavone II-type flavones. was essential for a high activity. A larger RD-group than methoxy in the B-ring has weakened the activity. The cytotoxicities of baicalein series could not be correlated to their structures.

  • PDF

Flavone from the Lycopersicon esculentum and their antioxidant capacity through GSH recovery effect (토마토(Lycopersicon esculentum)로부터 flavone 화합물의 분리 동정과 세포 내 GSH 회복능을 통한 항산화 활성 평가)

  • Jeon, Hyeong-Ju;Kim, Hyoung-Geun
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.363-368
    • /
    • 2021
  • The fruits of tomato (Lycopersicon esculentum) were extracted with 70% aqueous methanol (MeOH) and the concentrates were partitioned into ethyl acetate (EtOAc), n-butanol (n-BuOH), and water (H2O) fractions. The repeated silica gel (SiO2) and octadecyl silica gel column chromatographies for the EtOAc fraction, whose activity was confirmed, led to isolation of one flavone compound. Nuclear magnetic resornance, infrarad spectroscopy, and mass spectroscopy (MS) revealed the chemical structure of the isolated compound, 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone (1). LC-MS/MS analysis determined the content level of compounds 1 in the MeOH extract to be 4.02±0.12 ㎍/mg and in the TME-10 fraction to be 0.96±0.03 ㎍/mg. Through this study, the antioxidantive capacity was confirmed by demonstrating that the L. esculentum extract and their fractions showing an increase in glutathione mean and a decrease in glutathione heterogeneity uniformly raises the intracellular glutathione level.

Antimycobacterial and Antioxidant Flavones from Limnophila geoffrayi

  • Suksamrarn, Apichart;Poomsing, Ponsuda;Aroonrerk, Nuntana;Punjanon, Tadsanee;Suksamrarn, Sunit;Kongkun, Somkiat
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.816-820
    • /
    • 2003
  • The chloroform extract of the aerial part of Limnophila geoffrayi showed antimycobacterial and antioxidant activities. Bioassay-guided fractionation has led to the isolation of the flavones nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone, 1) and isothymusin (6,7-dimethoxy-5,8,4'-trihydroxyflavone, 2). Both compounds 1 and 2 exhibited inhibition activity against Mycobacterium tuberculosis, with equal MIC value of $200{\;}\mu\textrm{g}/mL$. Only compound 2 exhibited antioxidant activity against the radical scavenging ability of DPPH, with the $IC_{50}$ value of $7.7{\;}\mu\textrm{g}/mL$. The crude hexane, chloroform and methanol extracts as well as the pure compounds 1 and 2 did not exhibit mutagenic activity in the Bacillus subtilis recassay.

Metabolism of Eupatilin in the Rats Using Liquid Chromatography/Electrospray Mass Spectrometry

  • Ji, Hye-Young;Lee, Hye-Won;Lee, Hong-Il;Kim, Hae-Kyoung;Shim, Hyun-Joo;Kim, Soon-Hoe;Kim, Won-Bae;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.214.2-214.2
    • /
    • 2003
  • Eupatilin (5,7-dihydroxy-3",4",6-trimethoxyflavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC- electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3"- or- 4"-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3"-or 4"-O-demethyl- eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3"-or 4"-O- demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O demethyleupatilin and 3"-or 4"-O-demethyl-eupatilin glucuronide, respectively. (omitted)

  • PDF

The Protective Effect of Eupatilin against Hydrogen Peroxide-Induced Injury Involving 5-Lipoxygenase in Feline Esophageal Epithelial Cells

  • Lim, Jae-Chun;Park, Sun-Young;Nam, Yoon-Jin;Nguyen, Thanh Thao;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.313-320
    • /
    • 2012
  • In this study, we focused to identify whether eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone), an extract from Artemisia argyi folium, prevents $H_2O_2$-induced injury of cultured feline esophageal epithelial cells. Cell viability was measured by the conventional MTT reduction assay. Western blot analysis was performed to investigate the expression of 5-lipoxygenase by $H_2O_2$ treatment in the absence and presence of inhibitors. When cells were exposed to 600 ${\mu}M$ $H_2O_2$ for 24 hours, cell viability was decreased to 40%. However, when cells were pretreated with 25~150 ${\mu}M$ eupatilin for 12 hours, viability was significantly restored in a concentration-dependent manner. $H_2O_2$-treated cells were shown to express 5-lipoxygenase, whereas the cells pretreated with eupatilin exhibited reduction in the expression of 5-lipoxygenase. The $H_2O_2$-induced increase of 5-lipoxygenase expression was prevented by SB202190, SP600125, or NAC. We further demonstrated that the level of leukotriene $B_4$ ($LTB_4$) was also reduced by eupatilin, SB202190, SP600125, NAC, or nordihydroguaiaretic acid (a lipoxygenase inhibitor) pretreatment. $H_2O_2$ induced the activation of p38MAPK and JNK, this activation was inhibited by eupatilin. These results indicate that eupatilin may reduce $H_2O_2$-induced cytotoxicity, and 5-lipoxygenase expression and $LTB_4$ production by controlling the p38 MAPK and JNK signaling pathways through antioxidative action in feline esophageal epithelial cells.