• Title/Summary/Keyword: 4th-order Runge-Kutta

Search Result 90, Processing Time 0.031 seconds

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model (3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션)

  • Choi, Y.H.;Lee, J.H.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF

Analysis of Journal Locus in a Connecting Rod Bearing (엔진 연결봉 베어링의 운동 궤적 해석)

  • 조명래;정진영;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.17-23
    • /
    • 1998
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocation internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations are performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotation speeds, and bearing parameters.

  • PDF

Modeling and Application of Chlorine Bulk Decay in Drinking Water Distribution System (배급수계통에서 잔류염소 감소 특성 및 적용연구)

  • Ahn, Jae-Chan;Park, Chang-Min;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.487-496
    • /
    • 2005
  • Chlorine bulk decay tests were carried out by bottle test under controlled conditions in a laboratory. Experiments were performed at different temperatures: $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and the water temperatures when samples were taken from the effluent just before entering to its distribution system. 38 bulk tests were performed for water of Al (water treatment plant), 4 bulk tests for A2 (large service reservoir), and A3(pumping station). Residual chlorine concentrations in the amber bottles were measured over time till about 100 hours and bulk decay coefficients were evaluated by assuming first-order, parallel first-order, second-order. and $n^{th}-order$ reaction. The $n^{th}-order$ coefficients were obtained using Fourth-order Runge-Kutta Method. A good-fit by the average coefficient of determination ($R^2$) was first-order ($R^2=0.90$) < parallel first-order ($R^2{_{fast}}=0.92$, $R^2{_{slow}}=0.95$) < second-order ($R^2=0.95$) < $n^{th}-order$ ($R^2=0.99$). But if fast reaction of parallel first-order bulk decay were applied to the effluent of large service reservoir with ca. 20 hours of travel time and slow reaction in the water distribution system following the first 20 hours, parallel first-order bulk decay would be best and easy for application of water quality modeling technique.

Characterization of a Magnetron Sputtering Cathode by a 3D Particle Model (3차원 입자 모델을 이용한 마그네트론 스퍼터링 음극의 특성 분석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.205-213
    • /
    • 2008
  • A 3D particle code is developed to analyze electron behavior in a planar magnetron sputtering cathode either in balanced or unbalanced configuration. Three types of collisions are included; electron - neutral elastic, excitation to a metastable state and ionization. Flight path is calculated by a 4-th order Runge-Kutta method with a time step of 10 ps. Effects of electron starting position, magnetic field intensity and configuration were analyzed. For a more efficient and accurate modeling, multithreading technique is considered for multicore CPU computers. Under an assumption of cold ion approach, target erosion profiles are predicted for a flat target surface.

An Analysis Algorithm to Overcome the Singularity of Time Integrations for Dynamics Problems (동역학 문제의 시간적분 특이성을 극복하기 위한 해석 알고리듬)

  • 엄기상;윤성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.1-8
    • /
    • 2004
  • For the linearized differential algebraic equation of the nonlinear constrained system, exact initial values of the acceleration are needed to solve itself. It may be very troublesome to perform the inverse operation for obtaining the incremental quantities since the mass matrix contains the zero element in the diagonal. This fact makes the mass matrix impossible to be positive definite. To overcome this singularity phenomenon the mass matrix needs to be modified to allow the feasible application of predictor and corrector in the iterative computation. In this paper the proposed numerical algorithm based on the modified mass matrix combines the conventional implicit algorithm, Newton-Raphson method and Newmark method. The numerical example presents reliabilities for the proposed algorithm via comparisons of the 4th order Runge-kutta method. The proposed algorithm seems to be satisfactory even though the acceleration, Lagrange multiplier, and energy show unstable behaviour. Correspondingly, it provides one important clue to another algorithm for the enhancement of the numerical results.

  • PDF

3 DOFs bridge-vessel collision model considering with rotation behaviors of the vessel (선박의 회전거동을 고려한 3자유도 충돌모델)

  • Lee, Gye-Hee;Lee, Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.380-385
    • /
    • 2008
  • 3 DOFs model for the collision analysis of a bridge super-structure and a super-structure of the navigating vessels were proposed and analyzed. The collision event between the super-structure of vessel and the super-structure of bridge are different from the normal collision event that collided at sub-structure of bridge. Because of its moment arm, the stability force of vessel could affect to the collision behaviors. To consider this effect, 3 DOFs model including two translation DOFs and one rotational DOF were introduced. The restoration forces of the collision system were considered as nonlinear springs. The equations of motion were derived if form of differential equations and numerically solved by 4th order Runge-Kutta method. The accuracy and the feasibility of this model were verified by the numerical example with parameter of moment arm length.

  • PDF

Numerical Simulation and Analysis for Optimum Design of a Thermoacoustic Refrigerator (공명관식 열음향 냉동기의 최적설계를 위한 수치모사 및 설계인자 분석)

  • Kim, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.329-340
    • /
    • 1995
  • Basic refrigeration effect and efficiency of a thermoacoustic refrigerator is studied. The refrigerator model for numerical simulation is composed of half wavelength resonator and appropriate stack of plate. Theoretical model for thermoacoustic refrigeration suggested by Swift et. al is adapted for numerical calculation. The model contains arbitrary viscosity effect of the gas filled in the resonator. The wave equation is integrated by using 4-th order Runge-Kutta algorithm to give pressure distribution along the stack of plate. Heat flux and COP are also calculated based on the energy flux equation. By analyzing the numerical simulation results, optimum values of design parameters for thermoacoustic refrigerator are obtained.

  • PDF

A Effect of Saturable Reactor-Resistor Pair on High Power SCR Chopper (대전력 SCR 초퍼에서 가포하리액터-저항짝의 효과)

  • 강민구;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.442-447
    • /
    • 1988
  • Saturable reactor-resistor pair is proposed as a part of snubber and applied to a hard commutation chopper. SCR turn off process is modeled to simulate the hard commutation chopper. State equations are derived for each mode of the chopper and they are solved by Runge-Kutta 4th order method. It is shown that the reverse voltage spike and reverse dv/dt can be minimized by applying saturable reactor-resistor pair to the chopper which controls peak reverse recovery current and damping factor. Saturable reactor-resistor pair can be used to reduced SCR power loss and value of snubber capacitor and can be applied to high power thyristor devices.

  • PDF

Effects of Lobe Shapes on the Performance of Roots-Type Vacuum Pump (로브 형상 변화가 루츠형 진공 펌프 성능에 미치는 영향)

  • Kim, H.-J.;Kim, Youn J.;Hwang, Y.-K.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.50-56
    • /
    • 2000
  • The effects of lobe shapes on the leak flow conductance of Roots-type vacuum pump are studied numerically and experimentally. The modelled lobe shape of Roots-type vacuum pump is two-lobe spur gear. The numerical analyses are performed on leak flows in Roots-type vacuum pump. It is numerically calculated using a 4th-order Runge-Kutta method and is compared with experimental results. Results show that for the case of involute lobe shape the total amount of the leak flow conductance is greater than that of cycloid and Cassini oval lobe shapes.

  • PDF