• Title/Summary/Keyword: 4p deletion

Search Result 180, Processing Time 0.033 seconds

Overproduction and Operator DNA-Protein Blotting of R100 Mutant MerR from Shigella flexneri

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.250-255
    • /
    • 1994
  • Wild-type and four mutant R100 merR genes were cloned and the proteins overproduced under tac promoter control of pKK223-3. His118Ala, Cys117Ser, Cys126Ser, and wild-type MerR were successfully overproduced although amino-terminal 14 amino acids deletion mutant MerR was not successful. The amount of overproduced wild-type MerR protein as well as other mutant MerR was between 15%-20% of the total protein. The protein was able to be purified up to 95% homogeneity. Specific DNA-protein blotting experiments showed that the 95 bp operator containing DNA fragment could bind to Cys126Ser, His118Ala, and wild- type MerR, but not to Cys117Ser. These results were consistent with the previously reported complementation experiment results that His118Ala, Cys126Ser, and wild-type MerR could repress the mer operon but Cys117Ser could not.

  • PDF

Genetic Polymorphism of Epoxide Hydrolase and GSTM1 in Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환 발생에 Epoxide hydrolase와 GSTM1유전자 다형성의 의의)

  • Park, Sang Sun;Kim, Eun Joung;Son, Chang Young;Wi, Jeong Ook;Park, Kyung Hwa;Cho, Gye Jung;Ju, Jin Young;Kim, Kyu Sik;Kim, Yu II;Lim, Sung Chul;Kim, Young Chul;Park, Kyung Ok;Na, Kook Joo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.88-97
    • /
    • 2003
  • Background : Although smoking is a major cause of chronic obstructive pulmonary disease (COPD), only 10-20% of cigarette smokers develop symptomatic COPD, which suggests the presence of genetic susceptibility. This genetic susceptibility to COPD might depend on variations in the activities of the enzyme that detoxify hazardous chemical products, such as microsomal epoxide hydrolase (mEPHX) and glutathione-S transferase M1 subunit (GSTM1) genes. Methods : The genotypes of 58 patients with COPD, and 79 age matched control subjects, were determined by a polymerase chain reaction, followed by restriction fragment length polymorphism (PCR-RFLP) for the mEPHX, and multiplex PCR for the GSTM1. Results : GSTM1 was deleted in 53.3% of the subjects. There was no difference in GSTM1 deletion rates between the COPD patients (32/58, 55.2%) and the control subjects (41/79, 51.9%). The combination patterns of two polymorphisms of mEPHX showed slow enzyme activity in 29(21.2%), normal in 73(53.3%) and fast in 32(23.4%). The COPD group (7/57, 12.3%) showed a significantly lower incidence of slow enzyme activity compared to the control subjects (22/77, 28.6%, p<0.05). However, when the COPD and control groups were compared with smokers only, there were no significant differences in the genotypes of GSTM1 and mEPHX. Conclusion : The genotypes of GSTM1 and mEPHX were not significant risk factors of COPD in this cohort of study.

Correlation Between Primary Tuberculous Pleurisy and NRAMP1 Genetic Polymorphism (결핵성 흉막염 환자에서 NRAMP1 유전자 다형성에 대한 연구)

  • Kim, Je-Hyeong;Kim, Byung-Gyu;Jung, Ki-Hwan;Park, Sang-Myun;Lee, Sang-Youb;Lee, Sin-Hyung;Sin, Cheol;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.155-165
    • /
    • 2000
  • Background: The phagolysosomal function of alveolar macrophage against M. tuberculosis infection is influenced by Nramp1, which is encoded by the NRAMP1 gene. There are several genetic polymorphisms in NRAMP1, and these polymorphisms affect the innate host resistance through the defect in production and function of Nramp1. To investigate this relationship, the NRAMP1 genetic polymorphism in patients with primary tuberculous pleurisy was determined. Methods: Fifty-six primary tuberculous pleurisy patient, who were diagnosed by pleural biopsy, were designated to the pleurisy group and 45 healthy adults were designated to the healthy control group. Three genetic polymorphisms of NRAMP1, such as a single point mutation in intron 4(469+14G/C, INT4), a nonconservative single-base substitution at codon 543 that changes aspartic acid to asparagine(D543N) and a TGTG deletion in the 3' untranslated region(1729+55delI4, 3'UTR), were determined. Polymerase chain reaction(PCR) and polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP) were used. Results: The frequencies of mutant genotypes of INT4 and 3'UTR were significantly high in pleurisy group(p=0.001, p=0.023). But the frequencies of D543N were not significantly different between the two groups(p=0.079). The odds ratios, which are a comparison with wild genotype for determining mutant genotypes, were 8. 022(95% confidence interval=2.422-26.572) for INT4 and 5.733(95% confidence interval = 1.137~28.916) for 3'UTR ; these were statistically significant But the ratio for D543N was not significant In the combined analysis of the INT4 and 3'UTR polymorphisms, the odds ratios were 6.000(95% confidence interval = 1.461~24.640) for GC/++ genotype and 14.000(95% confidence interval=1.610~121.754) for GC/+del when compared with GG/++ homozygotes ; these were statistically significant. Conclusion: Among the NRAMP1 genetic polymorphisms, a single point mutation in intron 4(469+14G/C, INT4) and a TGTG deletion in the 3' untranslated region(1729+55del4, 3'UTR) were closely related to the primary tuberculous pleurisy.

  • PDF

Structure-Activity Relationships of Dimethylsphingosine (DMS) Derivatives and their Effects on Intracellular pH and $Ca^{2+}$ in the U937 Monocyte Cell Line

  • Chang, Young-Ja;Lee, Yun-Kyung;Lee, Eun-Hee;Park, Jeong-Ju;Chung, Sung-Kee;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.657-665
    • /
    • 2006
  • We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and $Ca^{2+}$ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and $Ca^{2+}$ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and $Ca^{2+}$, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and $Ca^{2+}$-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

Analysis of polymorphic regions of Plasmodium vivax Duffy binding protein of Korean isolates

  • Kho, Weon-Gyu;Chung, Joon-Yong;Sim, Eun-Jeong;Kim, Dong-Wook;Chung, Woo-Chul
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.2
    • /
    • pp.143-150
    • /
    • 2001
  • The present study was designed to investigate polymorphism in Duffy binding protein (DBP) gene of Plasmodium vivax isolates of Korea. Thirty samples were obtained from P. vivax patients in Yonchon-gun, Kyonggi-do in 1998. The PCR products of the samples were subjected to sequencing and hybridization analyses of the regions II and IV of P. vivax DBP gene. Two genotypes, SK-1 and SK-2, were identified on the basis of amino acid substitution and deletion. The genotype of 10 isolates was SK-1 and that of 20 isolates was SK-2. Most of the predicted amino acids in the region ll of DBP gene were conserved between the Korean isolates and Belem strain except for 4-5 amino acid substitutions. In the region W of DBP, a 6-bp insert that was shown in the Sal-1 allele type was found in SK-1, and a 27-bp insert that was shown in the Papua New Guinea allele type was found in SK-2. In conclusion, the present findings suggest that two genotypes of P. vivax coexist in the endemic area of Korea.

  • PDF

Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

  • Park, Sang-Ho;Choi, Hoseong;Kim, Semin;Cho, Won Kyong;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.371-376
    • /
    • 2016
  • Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

Construction of the Phosphate-Limitation Inducible Expression Vector Containing the phoA Promoter of Enterobacter aerogenes (Enterobacter aerogenes 의 phoA 유전자 Promoter를 이용한 인 제한환경에서 발현하는 벡터 구축)

  • 장화형;고병훈;박신영;이성호;김성진;임유정;한갑진;김영호;이영근
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.318-321
    • /
    • 2002
  • To induce recombinant protein under phosphate restricted conditions such as soil, we have constructed the expression vector (pEAAP) with phoA gene promoter of Enterobacter aerogenes. To construct the pEAAP, deletion of the T7 promoter and lac operator from pET-22b(+) by BglII-XhoI digestion and addition of the phoA gene promoter (containing the pho box) were performed. To test pEAAP as an expression vector controled by phosphate limitation, pEAPHY1 was constructed with the phytate gene (Bsa-phy1) of Bacillus subtillis var. amyloliquefaciens (KCTC 8913P). Under the phosphate-limitation condition, CK-PHY1 ( Escherichia coli JM109 was transformed with pEAPHY1) expressed the 41 kD Bsa-Phy1 . Also CK-PHY1 formed the clear zone in solid medium containing phytate as a sole phosphate source.

Association Study of Glutathione-S-Transferase M1/T1 Gene Polymorphism with Deficiency-Excess Differentiation-syndrome in Korean Bronchial Asthmatics (한국인 기관지 천식 환자에서 허설변증과 Glutathione-S-Transferase 유전자의 다형성 연구)

  • Yu, Seung-Ryeol;Jeong, Seung-Yeon;Jung, Ju-Ho;Kim, Jin-Ju;Jung, Sung-Ki
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.453-463
    • /
    • 2007
  • Backgrounds : Glutathione-s-transferase (GST) is a kind of phase II metabolism enzyme and plays an important role in the detoxification of various toxic chemicals. It was reported that the genetic polymorphism of GSTM1 and GSTT1 genes may be responsible for asthma development and susceptibility to allergy. Traditional oriental medicine uses a unique diagnostic technique. differentiation-syndrome. to analyze signs and symptoms of patients synthetically. Through differentiation-syndrome. asthma patients can be divided into two groups: the deficiency syndrome group (DSG) and the excess syndrome group (ESG). Objectives : The purpose of this study was to investigate the possible association of GST gene polymorphism with clinical phenotype by differentiation-syndrome of bronchial asthma patients. Materials and Methods : One hundred and ten participants were evaluated by pulmonary function test. Patients with 53 DSG and 31 ESG by differentiation-syndrome were assessed for genetic analysis. GSTM1 and GSTT1 deletion polymorphism was performed by polymerase chain reaction (PCR). Results : GSTM1 gene deletion was detected in 43.4% of individuals in the DSG and in 38.71 % in the ESG. The distribution of GSTM1 polymorphism between DSG and ESG was not significantly different [$x^2$=0.1767, p=0.6742; OR(95% CI)=1.2139(0.4915-2.9979)]. The proportion of GSTT1 null genotypes was 41.51% in the DGS and 45.16% in the ESG. The distribution of GSTT1 polymorphism between DSG and ESG was also not significantly different [$x^2$=0.1065, p=0.7442; OR(95% CI)=0.8618(0.3525-2.1065)]. In the combined analysis of GSTM1 and GSTT1 genes, the frequency of both null type of GSTM1/GSTT1 genes was not significantly different from both positive type of GSTM1/GSTT1 genes[$x^2$=0.0768, p=0.7817; OR(95% CI)=1.2000(0.3303-4.3602)] Conclusions : These results indicate that polymorphism of the GST gene might not be associated with the symptomatic classification of DSG and ESG by differentiation-syndrome in Korean asthmatics.

  • PDF

vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05

  • Wu, Xia;Chi, Xiaoyan;Wang, Yanhua;Zhang, Kailu;Kai, Le;He, Qiuning;Tang, Jinxiu;Wang, Kewen;Sun, Longshuo;Hao, Xiuying;Xie, Weihai;Ge, Yihe
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant $G05{\Delta}phz{\Delta}prn::lacZ$ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant $G05{\Delta}vfr$ and $G05{\Delta}phz{\Delta}prn::lacZ{\Delta}vfr$. By quantifying ${\beta}-galactosidase$ activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant $G05{\Delta}vfr$, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.

Expression of Bombyx mori Nucleopolyhedrovirus ORF4 under the Control of BaculoviruS Ie1 Promoter by a Novel Bac-to-Bac/BmNPV Baculovirus Expression System

  • Su, Wujie;Wu, Yan;Wu, Huiling;Wang, Wenbing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • Open reading frame 4 of Bombyx mori nucleopolyhedrovirus (BmNPV), designated as Bm4, is a gene whose function is completely unknown. With the recently developed BmNPV bacmid and a modified pFastBac1 whose polyhedrin promoter was replaced with ie1 promoter, a recombinant bacmid expressing Bm4-EGFP fusion protein under the control of ie1 promoter in BmN cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced efficiently with other promoters to direct the expression of foreign gene in BmN cells by using Bac-to-Bac/BmNPV baculovirus expression system but also laid the foundation for rescue experiment of Bm4 deletion mutant due to the ability of ie1 promoter to direct gene expression throughout the infection cycle.