• Title/Summary/Keyword: 4G spectrum

Search Result 486, Processing Time 0.026 seconds

A Study on the 5G Spectrum Auction Cases of 3.7 GHz Spectrum Band (해외 5G 주파수 경매사례 분석: 3.7GHz 대역을 중심으로)

  • Cho, C.W.;Lee, S.J.;Yu, J.E.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.70-81
    • /
    • 2022
  • This study derived implications regarding competition policy to establish a reasonable spectrum allocation draft of a 3.7 GHz spectrum band by indepth analysis of 5G spectrum auctions. The following general features were identified by examining auctions of three countries, including the United States, United Kingdom, and Denmark, were completed in 2021. First, securing the minimum bandwidth that is essential for service competition was guaranteed by applying the spectrum cap. Second, a continuous spectrum band was allocated to all mobile network operators. Third, certain requirements were implemented to encourage the expansion of 5G service coverage. The spectrum cap that was implemented in Korea during the most recent spectrum auction was ineffective regarding competition policy. Additionally, it is anticipated that the allocation of 3.7-4.0 GHz spectrum will considerably impact market competition because the continuity of spectrum band is different among mobile service operators. Therefore, it is time to discuss promoting the 5G service competition in Korea by revising related laws.

Study on Effective 5G Network Deployment Method for 5G Mobile Communication Services (5G 이동통신 서비스를 위한 효율적인 5G 망구축 방안에 관한 연구)

  • CHUNG, Woo-Ghee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.353-358
    • /
    • 2018
  • We herein analyze the service traffic characteristics and spectrum of the 5G mobile communication and suggest the effective 5G network deployment method for 5G mobile communication services. The data rates of the 5G mobile communication are from several kbps (voice and IoT) up to 1 Gbps (hologram, among others). The 5G mobile communication services show the diverse cell coverage environments owing to the use of diverse service data rates and multiple spectrum bands. To effectively support the 5G mobile communication services, the network deployment requires the optimization of the service coverages for new service environments and multiple spectrum bands. Considering the 5G spectrum bandwidth debated at present, if the 5G services of 100 Mbps can be supported in the 200 m cell edge using the 3.5 GHz spectrum bands, the 5G services of the 1 Gbps hologram and 500-Mbps 4k UHD can be supported in the cell edges of 50 m and 100 m using the 28 GHz spectrum bands. Therefore, the 5G services can be supported effectively by the 5G network deployment using spectrum portfolio configurations to match the diverse 5G services and multiple bands.

Estimation of Spectrum Requirements for 3G Mobile Communications Based on the Analysis of Korean Mobile Communications Traffic (국내 이동 통신 트래픽 분석에 의한 3G 이동 통신 주파수 소요량 산출)

  • Chung, Woo-Ghee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.257-263
    • /
    • 2009
  • Recently, as the 3G services of Korea have stepped into the developing stage and the traffic has been rapidly increasing, the spectrum requirements have been getting very large. Therefore spectrum reforming is considered actively and firstly exact methodology of spectrum requirement estimation is needed. But existing methodology depends on the future's service forecast than the present substantial data. This paper proposed the exact methodology of spectrum requirement estimation is based on the real data. So this paper analyzed the characteristics of Korean mobile communication traffic based on the real data and the algorithm suitable for estimation of spectrum requirements for 3G mobile communications, and calculated the parameters needed to estimate the spectrum requirements. Based on the traffic parameters of December 2007, simulations to Bet the estimation of annual spectrum requirements were implemented for the two different cases: one of which is 44 % annual increase in the data traffic and the other is 21 % annual increase. The simulation results show 90 MHz for the first case and 60 MHz for the second case in December 2011.

Strategic Reviews on Promoting the Fourth Industrial Revolution by Supplying 5G Additional Frequency (제4차 산업혁명 활성화를 위한 5G 추가 주파수 공급의 전략적인 의견)

  • Park, S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.1-16
    • /
    • 2019
  • The paper presents five strategic opinions for promoting the fourth industry revolution through the supply of 5G additional frequency. The assessments are on the basis of 5G frequency utilization technologies and services, with reference to 3GPP 5G New Radio standards, after investigating the domestic 1G, 2G, 3G, 4G, and 5G mobile communication services as well as the use of mobile radio frequency and spectrum. The presented opinions contain the frequency supply of contiguous-wide bandwidth channels, harmonized frequency supply between licensed and unlicensed spectrum, the existing 4G frequency recycle for increasing 5G coverage and capacity, balance frequency supply in the multi-band for 5G services, and the development of 5G vertical frequency for industry. The aim is that the presented five strategic opinions can offer guidance for the upcoming plan of domestic 5G additional frequency supply.

Applications of Intelligent Radio Technologies in Unlicensed Cellular Networks - A Survey

  • Huang, Yi-Feng;Chen, Hsiao-Hwa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2668-2717
    • /
    • 2021
  • Demands for high-speed wireless data services grow rapidly. It is a big challenge to increasing the network capacity operating on licensed spectrum resources. Unlicensed spectrum cellular networks have been proposed as a solution in response to severe spectrum shortage. Licensed Assisted Access (LAA) was standardized by 3GPP, aiming to deliver data services through unlicensed 5 GHz spectrum. Furthermore, the 3GPP proposed 5G New Radio-Unlicensed (NR-U) study item. On the other hand, artificial intelligence (AI) has attracted enormous attention to implement 5G and beyond systems, which is known as Intelligent Radio (IR). To tackle the challenges of unlicensed spectrum networks in 4G/5G/B5G systems, a lot of works have been done, focusing on using Machine Learning (ML) to support resource allocation in LTE-LAA/NR-U and Wi-Fi coexistence environments. Generally speaking, ML techniques are used in IR based on statistical models established for solving specific optimization problems. In this paper, we aim to conduct a comprehensive survey on the recent research efforts related to unlicensed cellular networks and IR technologies, which work jointly to implement 5G and beyond wireless networks. Furthermore, we introduce a positioning assisted LTE-LAA system based on the difference in received signal strength (DRSS) to allocate resources among UEs. We will also discuss some open issues and challenges for future research on the IR applications in unlicensed cellular networks.

Spectrum Sensing for Cognitive Radio Networks Based on Blind Source Separation

  • Ivrigh, Siavash Sadeghi;Sadough, Seyed Mohammad-Sajad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.613-631
    • /
    • 2013
  • Cognitive radio (CR) is proposed as a key solution to improve spectral efficiency and overcome the spectrum scarcity. Spectrum sensing is an important task in each CR system with the aim of identifying the spectrum holes and using them for secondary user's (SU) communications. Several conventional methods for spectrum sensing have been proposed such as energy detection, matched filter detection, etc. However, the main limitation of these classical methods is that the CR network is not able to communicate with its own base station during the spectrum sensing period and thus a fraction of the available primary frame cannot be exploited for data transmission. The other limitation in conventional methods is that the SU data frames should be synchronized with the primary network data frames. To overcome the above limitations, here, we propose a spectrum sensing technique based on blind source separation (BSS) that does not need time synchronization between the primary network and the CR. Moreover, by using the proposed technique, the SU can maintain its transmission with the base station even during spectrum sensing and thus higher rates are achieved by the CR network. Simulation results indicate that the proposed method outperforms the accuracy of conventional BSS-based spectrum sensing techniques.

Strategic and Technological Challenges for Wireless Communications beyond 3G

  • Evci, Cengiz;Barth, Ulrich;Sehier, Philippe
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.302-313
    • /
    • 2002
  • In order to facilitate and to meet the ever increasing demands for the wireless communication in the next decade and also to satisfy the high data rates for the new services, the future development of 3G (IMT2000) and systems beyond 3G (B3G) are foreseen. This article presents the need for these developments and motivations for systems beyond 3G taking into account both strategic and technological challenges to be faced. Moreover, the concepts and potential technologies involved including multiple airinterfaces, efficient spectrum allocation and utilisation for the success of systems B3G are briefly reviewed.

Optimization of Energy Modulation Filter for Dual Energy CBCT Using Geant4 Monte-Carlo Simulation

  • Ju, Eun Bin;Ahn, So Hyun;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.125-130
    • /
    • 2016
  • Dual energy computed tomography (DECT) is used to classify two materials and quantify the mass density of each material in the human body. An energy modulation filter based DECT could acquire two images, which are generated by the low- and high-energy photon spectra, in one scan, with one tube and detector. In the case of DECT using the energy modulation filter, the filter should perform the optimization process for the type of materials and thicknesses for generating two photon spectra. In this study, Geant4 Monte-Carlo simulation toolkit was used to execute the optimization process for determining the property of the energy modulation filter. In the process, various materials used for the energy modulation filter are copper (Cu, $8.96g/cm^3$), niobium (Nb, $8.57g/cm^3$), stannum (Sn, $7.31g/cm^3$), gold (Au, $19.32g/cm^3$), and lead (Pb, $11.34g/cm^3$). The thickness of the modulation filter varied from 0.1 mm to 1.0 mm. To evaluate the overlap region of the low- and high-energy spectrum, Geant4 Monte-Carlo simulation is used. The variation of the photon flux and the mean energy of photon spectrum that passes through the energy modulation filter are evaluated. In the primary photon spectrum of 80 kVp, the optimal modulation filter is a 0.1 mm lead filter that can acquire the same mean energy of 140 kVp photon spectrum. The lead filter of 0.1 mm based dual energy CBCT is required to increase the tube current 4.37 times than the original tube current owing to the 77.1% attenuation in the filter.

A Study on Application of DSS for enhancing 5G Coverage (5G 커버리지 개선을 위한 DSS 적용 방안 연구)

  • Seong-Gyoon, Park;Soong-Hwan, Ro
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.693-704
    • /
    • 2022
  • 5G service uses mid-band (n78) than existing mobile communication frequencies, so it is necessary to improve 5G coverage by utilizing low-band frequencies below 2 GHz. To this end, the application of Dynamic Spectrum Sharing technology of LTE and 5G-NR system using most of the low-band frequencies is required. In this paper, signaling overhead factors for DSS application and RF issues for terminal implementation are derived, and signaling overhead ratios from the respective perspectives of 5G-NR and LTE for the 1.8GHz band (50MHz width) that can utilize wide-bandwidth among low-band frequencies are estimated. Also handset RF issues were analyzed. Based on the analysis results, if DSS technology using low band is applied, it is expected that excellent 5G service quality can be provided due to 5G coverage improvement when LTE traffic quickly migrates to 5G-NR.

The Nonlinear Direct Spectrum Method Improving Application and Reliability of Existing Approximate Nonlinear Methods (기존 비선형약산법들의 신뢰성 개선을 위한 비선형직접스펙트럼법)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.55-66
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}/g$ and/or ductility ratio p from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method. The conclusions of this study are as follows; (1) Nonlinear direct spectrum method is considered as a practical method which is applicable to compute the structural initial elastic period and the yielding strength from stiffness skeleton owe and calculate the nonlinear maximum response of structure directly from nonlinear response spectrum. (2) The comparison of the analysis results from NDSM and NRHA showed that the average errors were less than 20% in about 3/4 of the analysis cases, and that the results obtained from NDSM turned out to be generally larger than those from NRHA.