• Title/Summary/Keyword: 4D visualization

Search Result 298, Processing Time 0.031 seconds

AUTOMATED CONSTRUCTION PLANNING AND VISUALIZATION

  • M. Kataoka
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.61-68
    • /
    • 2007
  • There has been a lot of research on and release of commercial systems that enable evaluation and visualization of construction methods. These have enabled the selection of good construction plans. However, the process in which engineers build 3D geometry, formulate a schedule and eventually synchronize them is still a time-consuming process. Changing any aspect of the geometry or the schedule and re-linking them is also time-consuming. Therefore, the engineers may compromise on getting the best solution. This paper describes a technique to automate the generation of multiple sets of schedules, quantity takeoffs and 4D visualization from a single 3D model.

  • PDF

Development of 3D Terrain Visualization for Navigation Simulation using a Unity 3D Development Tool

  • Shin, Il-Sik;Beirami, Mohammadamin;Cho, Seok-Je;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.570-576
    • /
    • 2015
  • 3D visualization of navigation simulation is to visualize the environment conditions (e.g. nearby ships, dynamic characteristics, environment, terrain, etc) for any users on ships at sea. Realistic 3D visualization enables the users to be immersed to it and guarantees the reliability of the simulation. In particular, terrain visualization contains many virtual objects, so it is time and cost-intensive for object modelling. This paper proposes a 3D terrain visualization method that can be realized in a short time and with low cost by using the Unity 3D development tool. The 3D terrain visualization system requires bathymetric and elevation terrains, and Aids to Navigations (AtoNs) to be realized. It also needs to include 3D visualization objects including bridges, buildings and port facilities for more accurate simulation. Bathymetric and AtoN elements are acquired from ENC, and the elevation element is acquired from SRTM v4.1 digital elevation chart database developed by NASA. Then, the bathymetric and elevation terrains are generated, and the satellite images are superposed by using this terrain information. The longitudinal and latitudinal information of the AtoNs are converted to the 3-axis information to position the AtoN locations. The 3D objects such as bridges, buildings and port facilities are generated and the terrain visualization is completed. The proposed method realizes more realistic 3D terrain visualization of Busan Port.

STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION OF FLOW FIELD DATA (유동장 데이터의 입체적 가시화를 위한 3-D 가상현실 기법의 적용)

  • Ha, J.H.;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.347-351
    • /
    • 2010
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of flow data is briefly described. This study is an extension of our previous and on-going research efforts to develop DATA(Data Analysis and Visualization Application) program, which is a data visualization program developed by using Qt as GUI development environment and OpenGL as graphic library. The program is developed upon the framework of object-oriented programming and it was originally developed by using Qt 3.3.3 environment. In this research the program is converted into a Qt 4.3.3-compatible version, and this new version is developed on Visual Studio 2005. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the lift and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional data visualization with stereoscopic technique combined with 3D Monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic data visualization system.

  • PDF

A study on the spray combustion characteristics of D.I. diesel engine using visualization engine system (가시화 엔진을 이용한 직분식 디젤 엔진의 분무 연소 특성에 관한 연구)

  • Chung, J.W.;Lee, K.H.;Choi, S.W.;Kim, B.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 1999
  • Recently, many researchers have been studied a D.I. diesel engine because of the exhaust gas restriction and fuel consumption performance. It is well known that the fuel injection characteristics are the key factors on the diesel combustion and exhaust emission. In this study, the fuel injection characteristics of 5-hole injector and the combustion characteristics are investigated with the amount of fuel by means of the visualization method and visualization D.I. diesel engine system. As the results of the experiments, the spray pattern of the fuel injection and the diffusion flame of a D.I. diesel engine are clarified. In addition, combustion phenomena with operation conditions such as engine speed and engine load are made clear.

  • PDF

3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing

  • Zhong Yongmin;Yuan Xiaobu
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2004
  • This paper presents a new approach to create 3D visualization from discrete simulation results. This approach connects discrete event simulation directly to 3D animation with its novel methods that analyze and convert discrete simulation results into animation events to trigger 3D animation. In addition, it constructs a 3D animation framework for the visualization of discrete simulation results. This framework supports the reuse of both the existing 3D animation objects and behavior components, and allows the rapid development of new 3D animation objects by users with no special knowledge in computer graphics. This approach has been implemented with the software component technology. As an application in virtual manufacturing, visualizations of an electronics assembly factory are also provided in the paper to demonstrate the performance of this new approach.

Lymphovenous anastomoses with three-dimensional digital hybrid visualization: improving ergonomics for supermicrosurgery in lymphedema

  • Will, Patrick A.;Hirche, Christoph;Berner, Juan Enrique;Kneser, Ulrich;Gazyakan, Emre
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.427-432
    • /
    • 2021
  • The conventional approach of looking down a microscope to perform microsurgical procedures is associated with occupational injuries, anti-ergonomic postures, and increased tremor and fatigue, all of which predispose microsurgeons to early retirement. Recently, three-dimensional (3D) visualization of real-time microscope magnification has been developed as an alternative. Despite its commercial availability, no supermicrosurgical procedures have been reported using this technology to date. Lymphovenous anastomoses (LVAs) often require suturing vessels with diameters of 0.2-0.8 mm, thus representing the ultimate microsurgical challenge. After performing the first documented LVA procedure using 3D-augmented visualization in our unit and gaining experience with this technique, we conducted an anonymized in-house survey among microsurgeons who had used this approach. The participants considered that 3D visualization for supermicrosurgery was equivalent in terms of handling, optical detail, depth resolution, and safety to conventional binocular magnification. This survey revealed that team communication, resident education, and ergonomics were superior using 3D digital hybrid visualization. Postoperative muscle fatigue, tremor, and pain were also reduced. The major drawbacks of the 3D visualization microscopic systems are the associated costs, required space, and difficulty of visualizing the lymphatic contrast used.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Development of the 3-D Fracture Network Analysis and Visualization Software Modules (삼차원 불연속면 연결구조 해석 및 가시화 소프트웨어 모듈 개발)

  • Noh, Young-Hwan;Choi, Yosoon;Um, Jeong-Gi;Hwang, Sukyeon
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.261-270
    • /
    • 2013
  • As part of the development of the 3-D geologic modeling software, this study addresses on new development of software modules that can perform the analysis and visualization of the fracture network system in 3-D. The developed software modules, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, are coded on Microsoft Visual Studio platform using the MFC and OpenGL library supported by C++ program language. Each module plays a role in construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software modules for analysis and visualization of the 3-D fracture network system can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses. All these benefits will further enhance the economic competitiveness of the domestic software industry.

A Study on Atmospheric Environment Visualization by Integrating 3D City Model and CFD Model (3D City모델과 CFD 모델을 통합한 대기환경 시각화 연구)

  • An, Seung-Man;Lee, Ho-Yeong;Sung, Hyo-Hyun;Choi, Yeong-Jin;Woo, Jung-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose of this study is enhancing CFD model by applying detailed and accurate CFD input data produced from 3D City model and integrating CFD model with 3D city model with OpenGL, 3D city aerodynamic simulation, and visualization tool. CFD_NIMR_SNU model developed by NIMR and SNU and 3D City model produced by NGII were used as input data. Wind flow and pollution diffusion simulator and viewer were developed in this study. Atmospheric environment simulation and visualization tool will save time and cost for urban climate planning and management by enhancing visual communication.

A Development of GVP for Hierarchical POI Information Visualization based on GML (GML 기반 계층적 POI 정보 가시화를 위한 GVP 개발)

  • Song, Eun-Ha;Park, Yong-Jin;Jeong, Young-Sik
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.541-548
    • /
    • 2008
  • Today, GIS service requires not only a simple map visualization but also geographical information of each object. However, POI service provides simply geographical naming service only because of lacking in geographical information of objects. In addition, geographical space data representation functioning that is the basis for most GIS has not been standardized yet. In this paper, it is designed that POI DB that is hierarchical and user-oriented and it is constructed that GVP(GML Viewer POI) that is the basis of GML specification to overcome difference and incompatibility of map visualization. GVP adds POI DB in a 3-Layer structure to dBase file managing the information of SHP file attributes. Therefore, POI visualization enables hierarchical search, by providing POI information in directory-type grouping. Consisting of map visualization and POI visualization, GVP regenerates attributes in the form of individual objects and responds to user events immediately.