• Title/Summary/Keyword: 4D Simulation

Search Result 2,592, Processing Time 0.032 seconds

A Development of the Torso Pattern for Obese Middle-aged Women from 3D Virtual Garment Simulation (3D 가상착의 시스템에 의한 비만 중년여성의 토르소 원형설계에 관한 연구)

  • Lim, Ji-Young
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.86-93
    • /
    • 2010
  • The purpose of this study was to develop torso pattern of Middle-aged obese women by using the virtual twin and 3D virtual garment simulation system. The results were as follows; 1. By using 3D Virtual Garment Simulation, new torso pattern considered obese women was development. The basic numerical formula were as follows ; bust girth B/2+5, armhole depth B/6+5, front waist girth W/4+2+0.5, back waist girth W/4+1-0.5, front hip girth H/4+1+0.5, back hip girth H/4+2-0.5, chest width B/6+2.5, back width B/6+2.5 and back neck width B/20+2.5. 2. According to the results of the new torso pattern's appearance evaluation, it estimated more highly than existing pattern in silhouette and ease amount, confirming that new torso pattern is appropriate for the obese women. Also, new torso pattern was evaluated to allow proper space length of bust, waist, abdomen and hip. Virtual models production through 3D body scan data, pattern draft and virtual garment digital program were applied to prototypic design method so as to enhance the fitness of ready-made garments. This study is expected to serve as one of important basic data for ensuing studies that may utilize 3D Virtual Garment Simulation System with 2D patterns, and also for future 3D Pattern Production Program development.

Aircraft 4D Trajectory Model for Air Traffic Control Simulator (항공교통관제 시뮬레이션을 위한 항공기 4D 궤적모델 개발)

  • Jung, Hyuntae;Lee, Keumjin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • This paper presents air traffic control simulation model for generating 4D trajectory, and aircraft dynamic model based on 4D trajectory information. With aircraft parameters from BADA and Total Energy Model, the trajectory is defined through modified Bezier curve and the simulation supports two aircraft control methods based on controlled time of arrival (CTA) or airspeed. The simulation results shown that flight time and path were almost identical to the defined trajectory, and derived the differences of each control methods according to wind conditions. Based on the simulation model developed in this study, it is expected to be applied to various air traffic management researches. Future studies will focus on applying optimization techniques in order to minimize the difference between generated trajectories and actual flight routes. This work will increase utilization of developed simulation futhermore.

The Verification of Channel Potential using SPICE in 3D NAND Flash Memory (SPICE를 사용한 3D NAND Flash Memory의 Channel Potential 검증)

  • Kim, Hyunju;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.778-781
    • /
    • 2021
  • In this paper, we propose the 16-layer 3D NAND Flash memory compact modeling using SPICE. In the same structure and simulation conditions, the channel potential about Down Coupling Phenomenon(DCP) and Natural Local Self Boosting (NLSB) were simulated and analyzed with Technology Computer Aided Design(TCAD) tool Atlas(SilvacoTM) and SPICE, respectively. As a result, it was confirmed that the channel potential of TCAD and SPICE for the two phenomena were almost same. The SPICE can be checked the device structure intuitively by using netlist. Also, its simulation time is shorter than TCAD. Therefore, using SPICE can be expected to efficient research on 3D NAND Flash memory.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

Visualizing Method of 4D Object by Weight of Construction Risk Factors (4D객체 활용에 의한 건설공사 리스크 인자별 중요도 시각화 기법연구)

  • Kang, Leen-Seok;Park, Seo-Young;Kim, Chang-Hak;Moon, Hyoun-Seok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.571-573
    • /
    • 2006
  • This study suggests a reasonable method for visualizing risk management level by risk weight linked with 4D model. This study defines risk management procedures as preparation, identification, analysis, response and management to manage potential risks in the construction project. The modules for computerizing in this system consist of planning, construction, application of WBS (Work Breakdown Structure) and RBS (Risk Breakdown Structure), and risk analysis. The final results include a method for visualizing risk level by each element of the project by using 4D simulation technique. It can be used as a visualized risk management tool instead of current system using numerical data.

  • PDF

Functional Analysis of 4D CAD System and Improvement of Function for Applying Linear Construction Project (4D CAD시스템의 기능분석 및 선형시설물 적용을 위한 기능 개선 방안)

  • Kim, Hyeon-Seoug;Kang, Leen-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.269-278
    • /
    • 2018
  • In Korea, BIM technology is applied mainly to building construction projects, but is expected to be applied rapidly to civil engineering projects because the government is currently considering the mandatory application of BIM for infrastructure facilities. Because the infrastructure project is processed in a horizontal work area, the application of BIM technology is more useful in the schedule management of the construction phase than the interference management of the design phase. The 4D CAD system is a typical BIM technology applied to the schedule management in the construction phase, but the application to the actual project is limited due to the lack of practical functions. This study examined the functions of four representative 4D CAD systems commercialized so that the selection criterion can be provided according to the characteristics of the project, and suggests that the functions that should be improved to have practicability. As a result of functional analysis, the application characteristics of each system were analyzed and the user convenience was suggested. In addition, a linear 4D simulation methodology was developed to improve the functions applicable to civil engineering projects, and ways to improve the utilization of the infrastructure projects as the construction phase BIM were suggested. In railway and road construction projects, most activities, such as earthwork, bridges, and tunnels proceed along the distance axis in a horizontal space. Therefore, a linear 4D simulation method, in which an activity is expressed along a distance axis, can be more practically useful rather than a simple 4D simulation method with a Gantt chart.

A study on the 3D simulation system improvement through comparing visual images between the real garment and the 3D garment simulation of women's Jacket (여성 재킷의 실제착의와 가상착의 비교를 통한 3D 가상착의 시스템 개선에 대한 연구)

  • Kwak, Younsin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.3
    • /
    • pp.15-22
    • /
    • 2016
  • The purpose of this study is to propose improvements for 3D garment simulation system by comparison with the difference between real garment and 3D garment simulation of women's jacket. The process of the study was to take pictures on the standard sized subject wearing the jacket of basic size, to get a avatar from body sizes of the subject, and to obtain images of 3D garment simulation on the avatar. The appearance evaluation was resulted by the method of a questionnaire survey after presenting the images to 24 members of patterner and 22 members of designer. On that appearance evaluation by designer group, perform comparative analysis of differences between the real garment and the 3D garment simulation of women's jacket. On that appearance evaluation by patterner group, perform comparative analysis of differences between the real garment and the 3D garment simulation of women's jacket. There were the differences on 4 areas: 1 questions of the side, 1 questions on the back, 7 questions on the sleeve, and 1 questions on the collar, and the results showed that the 3D garment simulation was preferable on each question.

Application of the 3D CAD Model Data for 4D Simulation and Quantity Estimation (4D 시뮬레이션 및 일정별 물량정보검색을 위한 3D 모델 정보 활용)

  • Lee Jae-Cheol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.4 s.20
    • /
    • pp.107-114
    • /
    • 2004
  • This paper represents the application of the 3D CAD Model data for 4D simulation and quantity estimation. These support the effective and practical use of 4D CAD model. By using and manipulating the 3D CAD model information, scheduling and quantity estimation could be developed more quickly and effectively. So the 3D CAD model information is made use of not only drawing a blueprint but also playing an important part of data integration platform. The scheduling module sets up the schedule generation logic that consists of period, priority of element arrangement, and time lag of floor placement. It sorts the working items as a priority of working process. And the quantity estimation module queries the material quantity of the structural elements according to the scheduling conditions. These two modules are developed using the 3D CAD model information and assist the function of 4D CAD model.

4H-SiC MESFET Large Signal modeling for Power device application (전력소자 응용을 위한 4H-SiC MESFET 대신호 모텔링)

  • Lee, Soo-Woong;Song, Nam-Jin;Burm, Jin-Wook;Ahn, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.229-232
    • /
    • 2001
  • 4H-SIC(silicon carbide) MESFET large signal model was studied using modified Materka-Kacprzak large signal MESFET model. 4H-SiC MESFET device simulation have been conducted by Silvaco's 2D device simulator, ATLAS. The result is modeled using modified Materka large signal model. simulation and modeling results are -8V pinch off voltage, under $V_{GS=0V}$, $V_{DS=25V}$ conditions, $I_{DSS=270㎃}$mm, $G_{m=45㎳}$mm were obtained. Through the power simulation 2GHz, at the bias of $V_{GS=-4V}$ and $V_{DS=25V}$, 10dB Gain, 34dBm(1dB compression point)output power, 7.6W/mm power density, 37% PAE(power added efficiency) were obtained.d.d.d.

  • PDF