• Title/Summary/Keyword: 4.16 Memory Storage

Search Result 24, Processing Time 0.032 seconds

Affects in and of Archives : Focused on 4.16 Memory Storage (정동의 기록화 '4.16 기억저장소'를 중심으로)

  • Lee, Kyong Rae
    • The Korean Journal of Archival Studies
    • /
    • no.74
    • /
    • pp.5-43
    • /
    • 2022
  • This study aims to explore the 'affective value' of records. Traditionally, records have been evaluated as having evidence value, information value, and artificial value. However, the 'affective turn' in the humanities and social sciences, which began in the 1990s, calls for discussion on the affective value of records. The overseas archive academia is in full swing discussing the emotional value of records after the 'affective turn'. However, there is no emotional discussion on records in the domestic archive academia. This study first conducts theoretical discussions to overcome these domestic limitations and explore the emotional value of archives in earnest. Following the theoretical discussion, a specific case will be dealt with next. As a representative storage of affect, which records the pain, sadness, and condolences of the domestic disaster era, this study investigates the record management case of the 4.16 Memory Storage. The Ferry Sewol disaster, which provided a dramatic opportunity to witness the unexpected ripple effect of affect in Korea, and the 4.16 Memory Storage as a recording activity, can be seen as a representative example of affective recording of the pain and sadness of survivors of the trauma incident. It will capture the differentiation of affet recording, which is different from the record management practice, and demonstrate empirically how this differentiation is implemented from collection to evaluation and service through the '4.16 Memory Storage'.

NVM-based Write Amplification Reduction to Avoid Performance Fluctuation of Flash Storage (플래시 스토리지의 성능 지연 방지를 위한 비휘발성램 기반 쓰기 증폭 감소 기법)

  • Lee, Eunji;Jeong, Minseong;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Write amplification is a critical factor that limits the stable performance of flash-based storage systems. To reduce write amplification, this paper presents a new technique that cooperatively manages data in flash storage and nonvolatile memory (NVM). Our scheme basically considers NVM as the cache of flash storage, but allows the original data in flash storage to be invalidated if there is a cached copy in NVM, which can temporarily serve as the original data. This scheme eliminates the copy-out operation for a substantial number of cached data, thereby enhancing garbage collection efficiency. Experimental results show that the proposed scheme reduces the copy-out overhead of garbage collection by 51.4% and decreases the standard deviation of response time by 35.4% on average.

Design of Optimized SWAP System for Next-Generation Storage Devices (차세대 저장 장치에 최적화된 SWAP 시스템 설계)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • On modern operating systems such as Linux, virtual memory is a general way to provide a large address space to applications by using main memory and storage devices. Recently, storage devices have been improved in terms of latency and bandwidth, and it is expected that applications with large memory show high-performance if next-generation storage devices are considered. However, due to the overhead of virtual memory subsystem, the paging system can not exploit the performance of next-generation storage devices. In this study, we propose several optimization techniques to extend memory with next-generation storage devices. The techniques are to allocate block addresses of storage devices for write-back operations as well as to configure the system parameters, and we implement the techniques on Linux 3.14.3. Our evaluation through using multiple benchmarks shows that our system has 3 times (/24%) better performance on average than the baseline system in the micro(/macro)-benchmark.

Efficient Metadata Management Scheme in NAND Flash based Storage Device (플래시 메모리기반 저장장치에서 효율적 메타데이터 관리 기법)

  • Kim, Dongwook;Kang, Sooyong
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.535-543
    • /
    • 2015
  • Recently, NAND flash based storage devices are being used as a storage device in various fields through hiding the limitations of NAND flash memory and maximizing the advantages. In particular, those storage devices contain a software layer called Flash Translation Layer(FTL) to hide the "erase-before-write" characteristics of NAND flash memory. FTL includes the metadata for managing the data requested from host. That metadata is stored in internal memory because metadata is very frequently accessed data for processing the requests from host. Thus, if the power-loss occurs, all data in memory is lost. So metadata management scheme is necessary to store the metadata periodically and to load the metadata in the initialization step. Therefore we proposed the scheme which satisfies the core requirements for metadata management and efficient operation. And we verified the efficiency of proposed scheme by experiments.

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF

Two-Tier Storage DBMS for High-Performance Query Processing

  • Eo, Sang-Hun;Li, Yan;Kim, Ho-Seok;Bae, Hae-Young
    • Journal of Information Processing Systems
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2008
  • This paper describes the design and implementation of a two-tier DBMS for handling massive data and providing faster response time. In the present day, the main requirements of DBMS are figured out using two aspects. The first is handling large amounts of data. And the second is providing fast response time. But in fact, Traditional DBMS cannot fulfill both the requirements. The disk-oriented DBMS can handle massive data but the response time is relatively slower than the memory-resident DBMS. On the other hand, the memory-resident DBMS can provide fast response time but they have original restrictions of database size. In this paper, to meet the requirements of handling large volumes of data and providing fast response time, a two-tier DBMS is proposed. The cold-data which does not require fast response times are managed by disk storage manager, and the hot-data which require fast response time among the large volumes of data are handled by memory storage manager as snapshots. As a result, the proposed system performs significantly better than disk-oriented DBMS with an added advantage to manage massive data at the same time.

Charge Spreading Effect of Stored Charge on Retention Characteristics in SONOS NAND Flash Memory Devices

  • Kim, Seong-Hyeon;Yang, Seung-Dong;Kim, Jin-Seop;Jeong, Jun-Kyo;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.183-186
    • /
    • 2015
  • This research investigates the impact of charge spreading on the data retention of three-dimensional (3D) silicon-oxide-nitride-oxide-silicon (SONOS) flash memory where the charge trapping layer is shared along the cell string. In order to do so, this study conducts an electrical analysis of the planar SONOS test pattern where the silicon nitride charge storage layer is not isolated but extends beyond the gate electrode. Experimental results from the test pattern show larger retention loss in the devices with extended storage layers compared to isolated devices. This retention degradation is thought to be the result of an additional charge spreading through the extended silicon nitride layer along the width of the memory cell, which should be improved for the successful 3-D application of SONOS flash devices.

Organic Bistable Switching Memory Devices with MeH-PPV and Graphene Oxide Composite

  • Senthilkumar, V.;Kim, Yong Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.290-292
    • /
    • 2015
  • We have reported about bipolar resistive switching effect on Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]:Graphene oxide composite films, which are sandwiched between aluminum and indium tin oxide electrodes. In this case, I-V sweep curve showed a hysteretic behavior, which varied according to the polarity of the applied voltage bias. The device exhibited excellent switching characteristics, with the ON/OFF ratio being approximately two orders in magnitude. The device had good endurance (105 cycles without degradation) and long retention time (5 × 103 s) at room temperature. The bistable switching behavior varied according to the trapping and de-trapping of charges on GO sites; the carrier transport was described using the space-charge-limited current (SCLC) model.

Low-power Buffer Cache Management for Mixed HDD and SSD Storage Systems (HDD와 SSD의 혼합형 저장 시스템을 위한 절전형 버퍼 캐쉬 관리)

  • Kang, Hyo-Jung;Park, Jun-Seok;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • A new buffer cache management scheme that aims at reducing power consumption in mixed HDD and NAND flash memory storage systems is presented. The proposed scheme reduces power consumption by considering different energy-consumption rate of storage devices, I/O operation type (read or write), and reference potential of cached blocks in terms of both recency and frequency. Simulation shows that the proposed scheme reduces power consumption by 18.0% on average and up to 58.9%.

Garbage Collection Technique for Balanced Wear-out and Durability Enhancement with Solid State Drive on Storage Systems

  • Kim, Sungho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.25-32
    • /
    • 2017
  • Recently, the use of NAND flash memory is being increased as a secondary device to displace conventional magnetic disk. NAND flash memory, as one among non-volatile memories, has many advantages such as low power, high reliability, low access latency, and so on. However, NAND flash memory has disadvantages such as erase-before-write, unbalanced operation speed, and limited P/E cycles, unlike conventional magnetic disk. To solve these problems, NAND flash memory mainly adopted FTL (Flash Translation Layer). In particular, garbage collection technique in FTL tried to improve the system lifetime. However, previous garbage collection techniques have a sensitive property of the system lifetime according to write pattern. To solve this problem, we propose BSGC (Balanced Selection-based Garbage Collection) technique. BSGC efficiently selects a victim block using all intervals from the past information to the current information. In this work, SFL (Search First linked List), as the proposed block allocation policy, prolongs the system lifetime additionally. In our experiments, SFL and BSGC prolonged the system lifetime about 12.85% on average and reduced page migrations about 22.12% on average. Moreover, SFL and BSGC reduced the average response time of 16.88% on average.