• Title/Summary/Keyword: 4-dihydropyridine

Search Result 45, Processing Time 0.02 seconds

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (1,4-디하이드로피리딘 산류의 합성)

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.80-86
    • /
    • 1989
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methyl 5-(2'-phenylsulfinyl) ethyl ester (10) or 2,6-Dimethyl-4-(2' or 3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-alkyl 5-(2-methylsulfonyl) ethyl ester (14a, b, c) were hydrolyzed by treatment with NaOH in aqueous EtOH solution to give 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (4b), 2,6-Dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (4c) and 2,6-Dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monoisopropyl ester (4d) in 80 -90% yield. By the same procedure, 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3,5-bis (2'-methylsulfonyl) ethyl ester (15) gave 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid (4e) in 96% yield.

  • PDF

Dialkylaminomethylation of 1,4-Dihydropyridine (1,4-Dihydropyridine의 Dialkylaminomethyl화 유도체의 합성)

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.280-284
    • /
    • 1989
  • When 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-mono methyl ester(3) was reacted with dimethyl methylene ammonium chloride (5a) and $K_2CO_3$ in DMF, 2,6-dimethyl-4-(3'-nitrophenyl)-5-(N,N-dimethylamino)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6a) was obtained in 41% yield. As the same procedure with compound (3) and the other dialkylaminomethylating reagents (5b, c, d, e), 2,6-dimethyl-4-(3'-nitrophenyl)-5-(N,N-diethylamino)methyl-1,4-dihydropyridine-3-carboxylic acid methylester(6b), 2,6-dimethyl-4-(3'-nitrophenyl)-5-(1'-pyrrolidinyl)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6c), 2,6-dimethyl-4-(3'-nitrophenyl)-5-(1'-piperidinyl)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6d) and 2,6-dimethyl-4-(3'-nitrophenyl)-5-(1'-morpholinyl)methyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (6e) were obtained in 28%, 49%, 48% and 18% yield respectively.

  • PDF

Synthesis of 1,4-Dihydropyridine-5-Formyl Derivatives (1,4-Dihydropyridine-5-Formyl 유도체의 합성)

  • Hong, You-Hwa;Suh, Jung-Jin
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.290-295
    • /
    • 1989
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid methyl ester (1) was formylated to 2,6-dimethy-4-(3'-nitrophenyl)-5-formyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (2) in 76% yield. At the elevated temperature, 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-monomethyl ester (3) was also converted into compound 2 in 46% yield. The compound 2 was reduced to 2,6-dimethyl-4-(3'-nitrophenyl)-5-hydroxymethyl-1,4-dihydropyridine-3-carboxylic acid methyl ester (4) in 91% yield. Compound 2 was reacted with triethyl phosphonoacetate to give 2,6-dimethyl-4-(3'-nitrophenyl)-5-(2-ethoxycarbonyl ethenyl)-1,4-dihydropyridine-3-carboxylic acid methyl ester (5) in 50% yield. Reaction between compound 2 and amines (methyl amine, ethylamine, methoxylamine, hydroxyl amine, phenyl hydrazine and 1-amino-4-methyl piperazine) gave six schiff bases 7a, 7b, 7c, 7e, 7f in 81%, 91%, 82%, 81%, 50% and 84% yield, respectively.

  • PDF

Synthesis of 3-Amino-1,4-dihydropyridine Derivative via an Intramolecular Rearrangement of 1,4-Dihydropyridine-3-hydroxamate

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.319-324
    • /
    • 1991
  • 2,6-Dimethyl-4-(3'-nitrophenyl)-3-methoxylaminocarbonyl-1,4-dihydropyridine-5-carboxylic acid methylester, 3b reacted with 2-cyanoethanol or benzylalcohol to give the corresponding cyanoethylurethane compound 6c in 40.6% yield and benzylurethane compound 6d in 32% yield. The cyanoethylurethane 6c was hydrolized in ethanolic NaOH to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-amino-5-carboxylic acid 5-methyl ester. HCl 8 in 64.8% yield. Another acid hydrolysis of benzylurethane 6d gave 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3-amino-5-carboxylic acid 5-methylester. HBr 11 in 54.7% yield.

  • PDF

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (III)

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.359-363
    • /
    • 1991
  • 2,6-Dimethyl-4-(3'-nitrophenyl)1,4-dihydropyridine-3,5-dicarboxylic acid 5-(2'-cyanoethyl) ester 10a reacted with chloromethyl methylsulfide to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methylthiomethyl 5-(2'-cyanoethyl) ester 11a in 88.1% yield. The synthesis of 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicrboxylic acid 3-methylthiomethyl ester 2a was achieved in 83% yield by alkaline hydrolysis of compound 11a in aqueous EtOH.

  • PDF

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (II) (1,4-디하드로피리딘 산류의 합성(II))

  • Suh, Jung-Jin;Hong, You-Hwa
    • YAKHAK HOEJI
    • /
    • v.33 no.4
    • /
    • pp.219-225
    • /
    • 1989
  • 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methyl 5-(2'-methylthio)ethyl ester methyl iodide salt (7a) was hydrolyzed by treatment with NaOH in aquous EtOH solution to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid mono methyl ester (2b) in 88% yield. By the same procedure, 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridinine-3,5-dicarboxylic acid 3-mono isopropyl ester (2c), 2,6-dimethyl-4-(2'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-mono methyl ester (2d), 2,6-dimethyl-4-(2',3'-dichlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-mono methyl ester (2e) and 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridin-3,5-dicarboxylic acid (2f) were obtained from the methyl iodide salts in 91-98% yield.

  • PDF

Synthesis of 4-(2, 4 dioxo-5-pyrimidyl)-1, 4-dihydropyridine Derivatives

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.310-313
    • /
    • 1990
  • Hantzsch synthesis of 5-formyluracil (1) methyl acetoacetate (2) and methyl 3-aminocrotonate (3) gave 2, 6-dimethyl-4-(2, 4-dioxo-5-pyrimidy)-1, 4-dihydropyridine-3, 5-dicarboxylic acid dimethylester (4a) in 54.6 yield. As the same procedure, 1, 3-dimethyl-5-formyl-uracil (6) gave 2, 6-dimethyl-4-(1, 3-dimethyl-2, 4-dioxo-5-pyrimidyl)-1, 4-dihydropyridine-3, 5-dicarboxylic acid dimethyl easter (7a) IN 52.2% yield. 4a was methylated to afford 7a also in 52% yield.

  • PDF

Effects of Dietary Dihydropyridine Supplementation on Laying Performance and Fat Metabolism of Laying Hens

  • Zou, X.T.;Xu, Z.R.;Zhu, J.L.;Fang, X.J.;Jiang, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1606-1611
    • /
    • 2007
  • The experiment was conducted to investigate the effects of dihydropyridine on laying performance and fat metabolism of laying hens. Five hundred and forty laying hens, 40 weeks old, were randomly allotted to three groups, each of which included four replicates of 45 hens. The groups were given a basal corn-soybean meal diet supplemented with 0, 150 mg/kg and 300 mg/kg dihydropyridine. Results showed that compared with the control group (0 mg/kg dihydropyridine), supplements of 150 and 300 mg/kg dihydropyridine increased egg production rate by 9.39% (p<0.01) and 12.97% (p<0.01), increased mean egg weight by 3% (p>0.05) and 4.8% (p>0.05), and improved feed efficiency by 9.54% (p<0.05) and 7.25% (p<0.05), respectively; The addition of 150 and 300 mg/kg dihydropyridine decreased percentage of abdominal fat by 35.4% (p<0.05) and 46.9% (p<0.05), decreased liver fat content by 32.4% (p<0.05) and 10.5% (p<0.05), increased HSL activity of abdominal fat by 39.64% (p<0.05) and 48.48% (p<0.05), increased HSL activity of liver by 9.4% (p>0.05) and 47.34% (p<0.05) and increased the content of cAMP in adenohypophysis by 14.67% (p<0.05) and 10.91% (p<0.05), respectively; The inclusion of 150 mg/kg dihydropyridine increased liver superoxide dismutase activity by 69.61% (p<0.05), and increased hepatic apoB concentration by 53.96% (p<0.05); The supplementation of 150 or 300 mg/kg dihydropyridine decreased malondialdehyde concentration of hepatic mitochondria by 30.90% (p<0.01) and 10.39% (p<0.05), respectively; Supplemented dihydropyridine had no significant effects on TG, Ch HDL-C and VLDL-C concentrations in serum; addition of 150 or 300 mg/kg dihydropyridine increased T3 levels in serum by 15.34% (p<0.05) and 11.88% (p<0.05) and decreased insulin concentration by 40.44% (p<0.05) and 54.37% (p<0.05), respectively. The results demonstrated that adding dihydropyridine had the tendency of improving very low density lipoprotein receptor (VLDLR) content in the ovary. It was concluded that dihydropyridine could improve laying performance and regulate the fat metabolism of laying hens and that 150 mg/kg dihydropyridine is the optimum dose for laying birds in practical conditions.

Synthesis of Methyl 2, 6-Dimethyl-5-(1', 2'-Dioxo-2'-Ethoxyethyl)-4-(3'-Nitrophenyl)-1, 4 Dihydropyridine -3-Carboxylate

  • Suh, Jung-Jin;Hong, You-Hwa
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.257-260
    • /
    • 1990
  • Hantzch's type reaction of methyl acetopyruvate (2a), methyl 3-aminocrotonate (3) and 3-nitrobenzaldehyde (4) led to dimethyl 3-acetyl-6-methyl-4-(3'-nitrophenyl)-2, 5-dicarboxylate (5a) and methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'-methoxyethyl)-4-(3' nitrophenyl)- 2, 5-dicarboxylate (5a) and methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'methoxyethyl_4-(3' nitrophenyl)1, 4-dihydropyridine-3-carboxylate (6a) in 26.7 and 9.2% yield, respectively. On the other hand, methyl 2, 60dimethyl-4-(3'-nitrophenyl)-1, 4-dihydropyridine 3-carboxylate (9) was acylated by ethyl oxaly chloride to give methyl 2, 6-dimethyl-5-(1', 2'-dioxo-2'-ethoxyethyl)-4-(3'-nitrophenyl)-a, 4-dihydropyridine-3-carboxylate (6b) in 76.8% yield.

  • PDF

Synthesis of 1, 4-dihydropyridine derivatives with vasodilating activities (l)

  • Suh, Jung-Jin;Lee, Bong-Yong;Kim, Chang-Seop;Lee, Jong-Wook;Kim, Byung-Chae;Han, Byung-Hee;Kim, Choong-Sup
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.240-245
    • /
    • 1990
  • Asymmetric 2, 6-dimethyl-4-aryl-1, 4-dihydropyridine-3, 5-dicarboxylate with [N-(3, 4-methylenedioxybenzyl)-N-methyl] aminoethyl group as the ester moiety and related 1, 4-dihydropyridine derivatives were prepared and tested for the effects on vascular smooth muscles. 2-6-dimethyl-4-(3'-nitrophenyl)1-4-dihydropyridine-3, 5-dicarboxylic acid 3-[N-(3', 4-methylenedioxybenzyl-N-methyl] aminoethyl ester 5-methyl ester (11) and 2, 6-dimethyl-4-(3'-nitrophenyl)-1, 4-dihydropyridine-3, 5-icarboxylic acid 3-[N-2', 3'-methylenedioxybenzyl)-N-methyl] aminoethyl ester 5-ethyl ester (150 showed potent vasodilating activities $IC_{50}$($10_{-8}M$) was 2, 6 and 2.7 for 11 and 15, compared with 3.5 for nicardipine.

  • PDF