• Title/Summary/Keyword: 4-chlorobenzoate

Search Result 31, Processing Time 0.024 seconds

Degradation of chlorinated herbicides by klebsiella pneumoniae from rhizosphere of rice (벼의 근권으로부터 분리한 klebsiella pneumoniae에 의한 제초제의 분리)

  • 김진웅;방성호;박성섭;고상균;이영록
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.317-322
    • /
    • 1986
  • It was observed that the strains of Klebsiella pneumoniae isolated from rhizosphere of rice, capable of utilizing chlorivated hervicides, such as 2, 4-dichlorophenoxyacetate, 2-methyl-4-chlorophenoxyacetate and 3-chlorobenzoate, as sole source of carbon and energy and confirmed that their degrading ability of the herbicides was due to plasmid genes. Characteristics of selected strains such as nitrogenase activity, resistances to antibiotics and heavy metal ion were measured.

  • PDF

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • 박동우;이상만;가종옥;김지경
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-275
    • /
    • 2002
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as carbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

Synthesis of New Benzylpiperidinyl Ether Derivatives as Amyloid-beta Aggregation Inhibitors (베타아밀로이드응집 억제제 도출을 위한 새로운 벤질피페리디닐에터 유도체의 합성)

  • Kwon, Young-Ee
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.326-331
    • /
    • 2006
  • We designed and synthesized new benzylpiperidinyl ether derivatives as beta-amyloid aggregation inhibitors for the development of novel anti-Alzheimer's disease agents. As starting material, 4-hydroxypiperidine was used. For protection of the amine group in piperidine (2), di-tert-butyl dicarbonate was reacted with 4-hydroxypiperidine in the presence of triethylamine. For introduction of benzyl group, benzylbromide was treated with compound 2 in dioxane. After deprotection of Boc group on amine in compound 3, ester (5) was synthesized by addition of ethyl-4-chlorobutyrate. The alcohol 6 was synthesized by hydride reduction of 5 using $LiAlH_4$. To obtain final products (7-14), the alcohol 6 was condensed with each of substituted benzoic acids. To screen beta-amyloid aggregation inhibition of the products, thioflavinT assay was performed using $A{\beta}1-42\;at\;37^{\circ}C$ for 26 h incubation, in vitro. From the result of screening, compound 8, 9, 11 and 12 showed effective activity about $65{\sim}85\;{\mu}M\;as\;IC_{50}$ value. Among the prepared compounds, 4-[4-(benzyloxy)piperidino]butyl-4-chlorobenzoate (8) was the most effective inhibitor having $IC_{50}\;of\;65.4{\mu}M$.

TOXIC EFFECTS OF 2,4-D AND OTHER AROMATIC COMPOUNDS ON BACTERIA, AND THEIR PROTECTIVE RESPONSES

  • Oh, Kye-Heon;Kim, Chi-Kyung
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.116-123
    • /
    • 2000
  • The purpose of this work was to investigate the induction of stress shock proteins (SSPs) in Burkholderia sp. YK-2 in response to 2,4-dichlorophenoxyacetic acid (2,4-D), and Pseudomonas sp. DJ-12 to benzoate, 4-chlorobenzoate (4-CBA), 4-hydroxybenzoate, and biphenyl. The SSPs, which contribute to the resistance of the cytotoxic effect of the toxic aromatic compounds including 2,4-D and 4-CBA, were induced at different concentrations of the compounds in exponentially growing cultures of Burkholderia sp. YK-2 or Pseudomonas sp. DJ-12. This response involved the induction of a 43 kDa DnaK and 41 kDa GroEL proteins in Burkholderia sp. YK-2, characterized by SDS-PAGE and Western blot using the anti-DnaK and anti-GroEL monoclonal antibodies. In Pseudomonas sp. DJ-12, 70 kDa DnaK and 60 kDa GroEL proteins was induced as SSPs, respectively. The total SSPs were analyzed by 2-D PAGE. Survival of Burkholderia sp. YK-2 or Pseudomonas sp. DJ-12 with time in the presence of different concentrations of the compounds was monitored, and viable counts paralleled the induction of the SSPs in these strains. Cells treated with the increased concentrations of toxic compounds showed some destructive openings on the cell envelopes.

  • PDF

Biochemical and Cytological Changes of Pseudomonas sp. DJ-12 Cells in Response to Catechol Treatment (Catechol 처리에 의한 Pseudomonas sp. DJ-12의 생화학 및 세포학적 변화)

  • 고연자;임재윤;김치경;이기성
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.139-145
    • /
    • 1999
  • Aromatic hydrocarbons which are not easily degraded by microorganisms can be accumulated in the conlaminated environment for a long lime, producing toxic effects on wild lives and humans. However, the sublethal concentrations of the chemicals induce the synthesis of stress-shock proteins in the cells and increase the adaptability of the organisms to the environmental stresses. In this study, therefore, the cells of Psezido~nonus sp. DJ- 12 treated with catechol at various concentrations were inveshgated for their survival, biodegtadability of catechol, production of stress-shock proteins, and cytological changes. The organisms were capable of degrading catechol at the range of 0.5 to 1.0 mM concentration wilhin 6 hours incubation, but they were killed by $10^2$-10$^3$ celllinl at 3 mM or higel- concentration without any catechol degradation. These cells treated with catechol begm lo produce DnaK and GroEL at 1 mM and 0.5 mM. respectively. Pseudumonas sp. DJ-12 treated with 10 mM catechol for I hour exhihiled some punctuated pores on the cell wall and contortion of the rod shape. The cells treated with he sublethal concentration of catechol showed the increased tolerance for suvival when exposed to the lethal concentration, and such tolerant effects were functioned crossly among benzoate, 4-chlorobenzoate, 'and catechol.

  • PDF