• Title/Summary/Keyword: 4-N-Acetylglucosaminyltransferase A

Search Result 6, Processing Time 0.025 seconds

Quantitative Screening of Insect Cell Transformants Stably Expressing $GFP_{uv}-{\beta}1$, 3-N-acetylglucosaminyltransferase 2 Fusion Protein

  • Deo Vipin Kumar;Kato Tatsuya;Asari Naoko;Park Enoch Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.275-279
    • /
    • 2005
  • Insect cell transformants, stably expressing human $GFP_{uv}-{\beta}1$, 3-N-acetylglucosaminyltransferase 2 $({\beta}3GnT2)$ as the green fluorescent protein $(GFP_{uv})-fused$ protein, were efficiently isolated on Western blot by the quantification of the densitometric intensity of the fusion protein. From almost 150 transformants containing the fusion gene linked to three different types of signal sequence, two transformants, Tn-pXme4a and -pX28a, were successfully selected, showing 8.3 and 8.6 mU/mL ${\beta}3GnT$ activity, respectively. This method requires a screening time almost one-half that required in the isolation of stably transformed cells with high expression levels, and at the same time allows the handling a large number of transformants.

Glycoantigen Biosyntheses of Human Hepatoma and Colon Cancer Cells are Dependent on Different N-Acetylglucosaminyltransferase-III and -V Activities

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.891-900
    • /
    • 2004
  • UDP-N-Acetylglucosamine(GlcNAc):$\beta$1,4-D-mannoside$\beta$-l ,4N-acetylglucosaminyltransferase-III (GnT-III) and UDP-N-GlcNAc:$\alpha$-6-D-mannosid$\beta$-1,6N-acetylglucosaminyltransferase-V(GnT - V) activities were determined in human hepatoma cell lines and metastatic colon cancer cells, and their activities were compared with those of normal liver cells and fetal hepatocytes. GnT-III activities were higher than those of GnT-V in hepatic carcinoma cells. When the two enzyme activities were assayed in highly metastatic colon cancer cells, GnT - V activities were much higher than those of GnT-III. When GlcN, GlcN-biant-PA and UDP-GlcNAc were used as substrates, the enzymes displayed different kinetic properties between hepatic and colon cancer cells, depending on their metastatic potentials. Normal cells of two origins had characteristically very low levels of GnT-III and -V activities, whereas hepatoma and colon cancer cells contained high levels of activities. These data were supported by RT-PCR and Northern blot analyses, showing that the expression of GnT-III and -V mRNAs were increased in proportion to the enzymatic activities. The increased GnT-III, md -V activities were also correlated with increased glycosylation of the cellular glycoproteins in hepatoma and colon cancer cells, as examined by lectin blotting analysis by using wheat germ glutinin (WGA), erythroagglutinating phytohemagglutinin (E-PHA), leukoagglutinating phytohemagglutinin (L-PHA), and concanavalin A (Con A). Treatment with retinoic acid, a differentiation agent, resulted in decreases of both GnT-III and -V activities of HepG2 and HepG3 cells. In colon carcinoma cells, however, treatment with retinoic acid resulted in a reduction of GnT-V activity, but not with GnT-III activity. Although the mechanism underlying the induction of these mzymes is unclear, oligosaccharides in many glycoproteins have been observed of cancer cells.

Identification and Functional Analysis of Pig β-1,4-N-Acetylglucosaminyltransferase A (MGAT4A) (돼지 유래의 β-1,4-N-acetylglucosaminyltransferase A (MGAT4A) 유전자의 동정 및 기능 분석)

  • Kim, Ji-Youn;Hwang, Hwan-Jin;Chung, Hak-Jae;Park, Mi-Ryung;Byun, Sung June;Kim, Kyung-Woon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • Glycan modification is important in pharmaceutical industry. Especially, sialic acid affects the bioactivity and stability of medicine. Milk of pig has been used as bioreactor to produce various pharmaceutical proteins. Therefore, it is necessary to modify the glycan chain in pig mammary grand. β-1,4-N-Acetylglucosaminyltransferase A (pMGAT4A) is one of the essential enzymes for increase of sialic acid content, but pig MGAT4A is unclear. In this study, the pMGAT4A was identified and characterized. The pMGAT4A has 1638 nucleotides encoding 535 amino acids and type II membrane topology, which is one of the common features in many glycosyltransferases. The gene was strongly expressed in liver and mammary gland, whereas was weakly expressed in small intestine, stomach and bladder. For functional test, HA-tagged MGAT4A was over-expressed in porcine kidney (PK-15) cell line. Forced expression of pMGAT4A gene was identified by qPCR, and we identified that pMGAT4A is located in Golgi complex by co- staining with HA antibody and BODIPY TR ceramide. In addition, we identified the increase of mannose-β-1,4-N-acetylglucosamine structure by ELISA and immunofluorescence using Datura stramonium agglutinin (DSA), which recognizes mannose-β-1,4-Nacetylglucosamine. Through the specific activity analysis, we showed that pMGAT4A modified bi-antennary to tri-antennary. This event affects sialic acid content. Therefore, we thought that over-expression of pMGAT4A will be necessary in pig mammary grand for improved medicine.

Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis (Poly-N-acetyllactosamine (poly-LacNAc) 합성에 관여하는 돼지 β-1,3-N-acetylglucosaminyltransferase I (pB3GNT1) 유전자 동정)

  • Kim, Ji-Youn;Hwang, Hwan-Jin;Chung, Hak-Jae;Hochi, Shinichi;Park, Mi-Ryung;Byun, Sung June;Oh, Keon Bong;Yang, Hyeon;Kim, Kyung-Woon
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.389-397
    • /
    • 2018
  • The structure of glycan residues attached to glycoproteins can influence the biological activity, stability, and safety of pharmaceutical proteins delivered from transgenic pig milk. The production of therapeutic glycoprotein in transgenic livestock animals is limited, as the glycosylation of mammary gland cells and the production of glycoproteins with the desired homogeneous glycoform remain a challenge. The ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) gene is an important enzyme that attaches N-acetylglucosamine (GlcNAc) to galactose (Gal) residues for protein glycosylation; however, there is limited information about pig glycosyltransferases. Therefore, we cloned the pig B3GNT1 (pB3GNT1) and investigated its functional properties that could attach N-acetylglucosamine to galactose residue. Using several different primers, a partial pB3GNT1 mRNA sequence containing the full open reading frame (ORF) was isolated from liver tissue. The ORF of pB3GNT1 contained 1,248 nucleotides and encoded 415 amino acid residues. Organ-dependent expression of the pB3GNT1 gene was confirmed in various organs from adult and juvenile pigs. The pB3GNT1 mRNA expression level was high in the muscles of the heart and small intestine but was lower in the lungs. For functional characterization of pB3GNT1, we established a stable expression of the pB3GNT1 gene in the porcine kidney cell line (PK-15). As a result, it was suggested that the glycosylation pattern of pB3GNT1 expression in PK-15 cells did not affect the total sialic acid level but increased the poly N-acetyllactosamine level. The results of this study can be used to produce glycoproteins with improved properties and therapeutic potential for the generation of desired glycosylation using transgenic pigs as bioreactors.

Identification of a New 5'-Noncoding Exon Region and Promoter Activity in Human N-Acetylglucosaminyltransferase III Gene

  • Kang, Bong-Seok;Kim, Yeon-Jeong;Shim, Jae-Kyoung;Song, Eun-Young;Park, Young-Guk;Lee, Young-Choon;Nam, Kyung-Soo;Kim, June-Ki;Lee, Tae-Kyun;Chung, Tae-Wha;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.578-584
    • /
    • 1998
  • In a previous paper (Kim et al., 1996a), the immediate 5' -flanking region and coding region of the human UDP-N -acetylglucosamine:-D-mannoside-1,4-Nacetylglucosaminyltransferase III (N-acetylglucosaminyitransferase- III; GnT-III) gene was reported, isolated and analyzed. Herein, we report on amplification of a new 5' -noncoding region of the GnT-III mRNA by single-strand ligation to single-stranded cDNA-PCR (5' -RACE PCR) using poly(A)+ RNA isolated from human fetal liver cells. A cDNA clone was obtained with 5' sequences (96 bp) that diverged seven nucleotides upstream from the ATG (+1) start codon. A concensus splice junction sequence, TCTCCCGCAG, was found immediately 5' to the position where the sequences of the cDNA diverged. The result suggested the presence of an intron in the 5' -noncoding region and that the cDNA was an incompletely reversetranscribed cDNA product derived from an mRNA containing a new noncoding exon. When mRNA expression of GnT-III in various human tissues and cancer cell lines was examined, Northern blot analysis indicated high expression levels of GnT-III in human fetal kidney and brain tissues, as well as for a number of leukemia and lymphoma cancer cell lines. Promoter activities of the 5' -flanking regions of exon 1 and the new noncoding region were measured in a human hepatoma cell line, HepG2, by luciferase assays. The 5'-flanking region of exon 1 was the most active, whilst that of exon 2 was inactive.

  • PDF

A Novel Therapeutic Effect of a New Variant of CTLA4-Ig with Four Antennas That Are Terminally Capped with Sialic Acid in the CTLA4 Region

  • Piao, Yongwei;Yun, So Yoon;Kim, Hee Soo;Park, Bo Kyung;Ha, Hae Chan;Fu, Zhicheng;Jang, Ji Min;Back, Moon Jung;Shin, In Chul;Won, Jong Hoon;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.529-539
    • /
    • 2022
  • Rheumatoid arthritis (RA) is a multifactorial immune-mediated disease, the pathogenesis of which involves different cell types. T-cell activation plays an important role in RA. Therefore, inhibiting T-cell activation is one of the current therapeutic strategies. Cytotoxic T-lymphocyte antigen 4-immunoglobulin (CTLA4-Ig), also known as abatacept, reduces cytokine secretion by inhibiting T-cell activation. To achieve a homeostatic therapeutic effect, CTLA4-Ig has to be administered repeatedly over several weeks, which limits its applicability in RA treatment. To overcome this limitation, we increased the number of sialic acid-capped antennas by genetically engineering the CTLA4 region to increase the therapeutic effect of CTLA4-Ig. N-acetylglucosaminyltransferase (GnT) and α2,6-sialyltransferase (α2,6-ST) were co-overexpressed in Chinese hamster ovary (CHO) cells to generate a highly sialylated CTLA4-Ig fusion protein, named ST6. The therapeutic and immunogenic effects of ST6 and CTLA4-Ig were compared. ST6 dose-dependently decreased paw edema in a mouse model of collagen-induced arthritis and reduced cytokine levels in a co-culture cell assay in a similar manner to CTLA4-Ig. ST6- and CTLA4-Ig-induced T cell-derived cytokines were examined in CD4 T cells isolated from peripheral blood mononuclear cells after cell killing through irradiation followed by flow- and magnetic-bead-assisted separation. Interestingly, compared to CTLA4-Ig, ST6 was substantially less immunogenic and more stable and durable. Our data suggest that ST6 can serve as a novel, less immunogenic therapeutic strategy for patients with RA.