Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.4.389

Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis  

Kim, Ji-Youn (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Hwang, Hwan-Jin (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Chung, Hak-Jae (Swine Science Division, National Institute of Animal Science, Rural Development Administration)
Hochi, Shinichi (Faculty of Textile Science and Technology, Shinshu University)
Park, Mi-Ryung (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Byun, Sung June (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Oh, Keon Bong (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Yang, Hyeon (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Kim, Kyung-Woon (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of Life Science / v.28, no.4, 2018 , pp. 389-397 More about this Journal
Abstract
The structure of glycan residues attached to glycoproteins can influence the biological activity, stability, and safety of pharmaceutical proteins delivered from transgenic pig milk. The production of therapeutic glycoprotein in transgenic livestock animals is limited, as the glycosylation of mammary gland cells and the production of glycoproteins with the desired homogeneous glycoform remain a challenge. The ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) gene is an important enzyme that attaches N-acetylglucosamine (GlcNAc) to galactose (Gal) residues for protein glycosylation; however, there is limited information about pig glycosyltransferases. Therefore, we cloned the pig B3GNT1 (pB3GNT1) and investigated its functional properties that could attach N-acetylglucosamine to galactose residue. Using several different primers, a partial pB3GNT1 mRNA sequence containing the full open reading frame (ORF) was isolated from liver tissue. The ORF of pB3GNT1 contained 1,248 nucleotides and encoded 415 amino acid residues. Organ-dependent expression of the pB3GNT1 gene was confirmed in various organs from adult and juvenile pigs. The pB3GNT1 mRNA expression level was high in the muscles of the heart and small intestine but was lower in the lungs. For functional characterization of pB3GNT1, we established a stable expression of the pB3GNT1 gene in the porcine kidney cell line (PK-15). As a result, it was suggested that the glycosylation pattern of pB3GNT1 expression in PK-15 cells did not affect the total sialic acid level but increased the poly N-acetyllactosamine level. The results of this study can be used to produce glycoproteins with improved properties and therapeutic potential for the generation of desired glycosylation using transgenic pigs as bioreactors.
Keywords
N-acetylglucosamine (GlcNAc); N-acetyllactosamine (LacNAc); pig ${\beta}$-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1); PK-15;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T. and Fukuda, M. 1997. Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. USA. 94, 14294-14299.   DOI
2 Seales, E. C., Jurado, G. A., Brunson, B. A., Wakefield, J. K., Frost, A. R. and Bellis, S. L. 2005. Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res. 65, 4645-4652.   DOI
3 Su, D., Zhao, H. and Xia, H. 2010. Glycosylation-modified erythropoietin with improved half-life and biological activity. Int. J. Hematol. 91, 238-244.   DOI
4 Swindall, A. F. and Bellis, S. L. 2011. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J. Biol. Chem. 286, 22982-22990.   DOI
5 Ujita, M., McAuliffe, J., Hindsgaul, O., Sasaki, K., Fukuda, M. N. and Fukuda, M. 1999. Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and beta1,4-galactosyltransferase I. J. Biol. Chem. 274, 16717-16726.   DOI
6 Wu, Z. L., Ethen, C. M., Prather, B., Machacek, M. and Jiang, W. 2011. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology 21, 727-733.   DOI
7 Yang, Z., Wang, S., Halim, A., Schulz, M. A., Frodin, M., Rahman, S. H., Vester-Christensen, M. B., Behrens, C., Kristensen, C., Vakhrushev, S. Y., Bennett, E. P., Wandall, H. H. and Clausen, H. 2015. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol. 33, 842-844.   DOI
8 Bao, X., Kobayashi, M., Hatakeyama, S., Angata, K., Gullberg, D., Nakayama, J., Fukuda, M. N. and Fukuda, M. 2009. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA. 106, 12109-12114.   DOI
9 Biellmann, F., Henion, T. R., Burki, K. and Hennet, T. 2008. Impaired sexual behavior in male mice deficient for the beta1-3 N-acetylglucosaminyltransferase-I gene. Mol. Reprod. Dev. 75, 699-706.   DOI
10 Bless, E., Raitcheva, D., Henion, T. R., Tobet, S. and Schwarting, G. A. 2006. Lactosamine modulates the rate of migration of GnRH neurons during mouse development. Eur. J. Neurosci. 24, 654-660.   DOI
11 Dabrowski, U., Hanfland, P., Egge, H., Kuhn, S. and Dabrowski, J. 1984. Immunochemistry of I/i-active oligo- and polyglycosylceramides from rabbit erythrocyte membranes. Determination of branching patterns of a ceramide pentadecasaccharide by 1H nuclear magnetic resonance. J. Biol. Chem. 259, 7648-7651.
12 Egan, S., Cohen, B., Sarkar, M., Ying, Y., Cohen, S., Singh, N., Wang, W., Flock, G., Goh, T. and Schachter, H. 2000. Molecular cloning and expression analysis of a mouse UDP-GlcNAc:Gal(beta1-4)Glc(NAc)-R beta1,3-N-acetylglucosaminyltransferase homologous to Drosophila melanogaster Brainiac and the beta1,3-galactosyltransferase family. Glycoconj. J. 17, 867-875.   DOI
13 Fukuda, M., Dell, A., Oates, J. E. and Fukuda, M. N. 1984. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J. Biol. Chem. 259, 8260-8273.
14 Fukuda, M., Fukuda, M. N. and Hakomori, S. 1979. Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254, 3700-3703.
15 Yoshida, A., Minowa, M. T., Takamatsu, S., Hara, T., Oguri, S., Ikenaga, H. and Takeuchi, M. 1999. Tissue specific expression and chromosomal mapping of a human UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1, 4-N-acetylglucosaminyltransferase. Glycobiology 9, 303-310.   DOI
16 Fukuda, M., Spooncer, E., Oates, J. E., Dell, A. and Klock, J. C. 1984. Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J. Biol. Chem. 259, 10925-10935.
17 Fukuda, M. N., Sasaki, H., Lopez, L. and Fukuda, M. 1989. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73, 84-89.
18 Fukuta, K., Abe, R., Yokomatsu, T., Kono, N., Asanagi, M., Omae, F., Minowa, M. T., Takeuchi, M. and Makino, T. 2000. Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10, 421-430.   DOI
19 Fukuta, K., Yokomatsu, T., Abe, R., Asanagi, M. and Makino, T. 2000. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj. J. 17, 895-904.   DOI
20 Hakomori, S. 2002. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. USA. 99, 10231-10233.   DOI
21 Kitazume, S., Imamaki, R., Ogawa, K., Komi, Y., Futakawa, S., Kojima, S., Hashimoto, Y., Marth, J. D., Paulson, J. C. and Taniguchi, N. 2010. Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J. Biol. Chem. 285, 6515-6521.   DOI
22 Ko, H. K., Song, K. H., Jin, U. H., Seong, H. H., Chang, Y. C., Kim, N. H., Kim, D. S., Lee, Y. C. and Kim, C. H. 2010. Molecular characterization of pig alpha2,3-Gal-beta1,3-GalNAc-alpha2,6-sialyltransferase (pST6GalNAc IV) gene specific for Neu5Acalpha2-3Galbeta1-3GalNAc trisaccharide structure. Glycoconj. J. 27, 367-374.   DOI
23 Lee, H. G., Lee, H. C., Kim, S. W., Lee, P., Chung, H. J., Lee, Y. K., Han, J. H., Hwang, I. S., Yoo, J. I., Kim, Y. K., Kim, H. T., Lee, H. T., Chang, W. K. and Park, J. K. 2009. Production of recombinant human von Willebrand factor in the milk of transgenic pigs. J. Reprod. Dev. 55, 484-490.   DOI
24 Lee, M., Park, J. J. and Lee, Y. S. 2010. Adhesion of ST6Gal I-mediated human colon cancer cells to fibronectin contributes to cell survival by integrin beta1-mediated paxillin and AKT activation. Oncol. Rep. 23, 757-761.
25 Lee, P. L., Kohler, J. J. and Pfeffer, S. R. 2009. Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology 19, 655-664.   DOI
26 Lin, J. T., Bhattacharyya, D. and Kecman, V. 2003. Multiple regression and neural networks analyses in composites machining. Compos. Sci. Technol. 63, 539-548.   DOI
27 Munro, S. 1998. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 8, 11-15.   DOI
28 Nairn, A. V., York, W. S., Harris, K., Hall, E. M., Pierce, J. M. and Moremen, K. W. 2008. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283, 17298-17313.   DOI
29 Park, J. K., Lee, Y. K., Lee, P., Chung, H. J., Kim, S., Lee, H. G., Seo, M. K., Han, J. H., Park, C. G., Kim, H. T., Kim, Y. K., Min, K. S., Kim, J. H., Lee, H. T. and Chang, W. K. 2006. Recombinant human erythropoietin produced in milk of transgenic pigs. J. Biotechnol. 122, 362-371.   DOI
30 Patsos, G., Robbe-Masselot, C., Klein, A., Hebbe-Viton, V., Martin, R. S., Masselot, D., Graessmann, M., Paraskeva, C., Gallagher, T. and Corfield, A. 2007. O-glycan regulation of apoptosis and proliferation in colorectal cancer cell lines. Biochem. Soc. Trans. 35, 1372-1374.   DOI
31 Rosen, S. D. and Bertozzi, C. R. 1996. Two selectins converge on sulphate. Leukocyte adhesion. Curr. Biol. 6, 261-264.   DOI