• 제목/요약/키워드: 4-Equations

검색결과 4,203건 처리시간 0.034초

GENERALIZED INVERSES IN NUMERICAL SOLUTIONS OF CAUCHY SINGULAR INTEGRAL EQUATIONS

  • Kim, S.
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.875-888
    • /
    • 1998
  • The use of the zeros of Chebyshev polynomial of the first kind $T_{4n+4(x}$ ) and second kind $U_{2n+1}$ (x) for Gauss-Chebyshev quad-rature and collocation of singular integral equations of Cauchy type yields computationally accurate solutions over other combinations of $T_{n}$ /(x) and $U_{m}$(x) as in [8]. We show that the coefficient matrix of the overdetermined system has the generalized inverse. We estimate the residual error using the norm of the generalized inverse.e.

  • PDF

천정 크레인시스템의 안정성 해석 (Analysis of Stability for Overhead Crane Systems)

  • 반갑수;이광호;모창기;이종규
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.128-135
    • /
    • 2005
  • Overhead crane systems consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. The dynamic system of these systems becomes a nonlinear state equations. These equations are obtained by the nonlinear equations of motion which are derived from transfer functions of driving motors and equations of motion for objects. From these state equations, Lyapunov functions of overhead crane systems are derived from integral method. These functions secure stability of autonomous overhead crane systems. Also constraint equations of driving motors of trolley, girder, and hoist are derived from these functions. From the results of computer simulation, it is founded that overhead crane systems is secure.

PREDICTING PARAMETERS OF TRANSIENT STORAGE ZONE MODEL FOR RIVER MIXING

  • Cheong, Tae-Sung;Seo, Il-Won
    • Water Engineering Research
    • /
    • 제4권2호
    • /
    • pp.69-85
    • /
    • 2003
  • Previously developed empirical equations used to calculate the parameters of the transient storage model are analyzed in depth in order to evaluate their behavior in representing solute transport in the natural streams with storage zone. A comparative analysis of the existing theoretical and experimental equations used to predict parameters of the transient storage (TS) model is reported. New simplified equations for predicting 4 key parameters of the TS model using hydraulic data sets that are easily obtained in the natural streams are also developed. The weighted one-step Huber method, which is one of the nonlinear multi-regression methods, is applied to derive new parameters equation. These equations are proven to be superior in explaining mixing characteristics of natural streams with the transient storage zone more precisely than the other existing equations.

  • PDF

Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag

  • Geiser, Jurgen;Calov, Reinhard
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.325-343
    • /
    • 2012
  • We present different numerical methods for solving the shallow shelf equations with basal drag (SSAB). An alternative approach of splitting the SSAB equation into a Laplacian and diagonal shift operator is discussed with respect to the underlying eigenvalue problem. First, we solve the equations using standard methods. Then, the coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than the operator of the basal shear stress. Here, we could apply a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a more frequent iteration on the operator of the membrane stresses. We show that this splitting accelerates and stabilize the computational performance of the numerical method, although an appropriate choice of the standard method used to solve for all operators in one step speeds up the scheme as well.

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

복합재료 적층판의 해석을 위한 일반화 준 3차원 변위식의 도출 (The Derivation of Generalized Quasi-Three Dimensional Displacement Field Equations for the Analysis of Composite Laminates)

  • 김택현
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.21-27
    • /
    • 1998
  • In the case of existing in free-edge delaminations of composite laminates which are symmetry with respect to mid-plane in laminates also, in the case of asymmetry and anti-symmetry, the generalized quasi-three dimensional displacement field equations developed from quasi-three dimensional displacement field equations can be applied to solve above cases. We introduce three paramenters in this paper, which have not been used in quasi-three dimensional displacement field equations until now. To the laminate subjected to the axial extension strain $\varepsilon$0(C1) in $\chi$-direction, the bending deformation $\chi$$\chi$(C$_2$) around у-direction, the bending deformation w$\chi$(C$_4$) around z-direction and the twisting deformation $\chi$$\chi$y(C$_3$) around $\chi$-direction .The generalized quasi-three dimensional displacement field equations are able to be analyzed efectively.

포스트텐션 정착구역에서의 파열력 산정식 비교 분석 (Comparative Study of Bursting Force Equations for Post-Tensioned Anchorage Zones)

  • 김민숙;윤치호;이영학
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.69-76
    • /
    • 2017
  • For evaluating equations of bursting force in different codes, comparative study of the formulas was conducted. Because the equations does not consider variables such as shape of anchorages, angle of tendons, and eccentricity, a relation between the bursting forces and the variables has to be analyzed. In this paper, therefore, a comparative analysis of bursting forces computed by equations in the codes and finite element analysis was performed. As a result, it could be figured out that bursting force equations in the local zone were determined by coefficient k.

A Regularization-direct Method to Numerically Solve First Kind Fredholm Integral Equation

  • Masouri, Zahra;Hatamzadeh, Saeed
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.869-881
    • /
    • 2020
  • Most first kind integral equations are ill-posed, and obtaining their numerical solution often requires solving a linear system of algebraic equations of large condition number, which may be difficult or impossible. This article proposes a regularization-direct method to numerically solve first kind Fredholm integral equations. The vector forms of block-pulse functions and related properties are applied to formulate the direct method and reduce the integral equation to a linear system of algebraic equations. We include a regularization scheme to overcome the ill-posedness of integral equation and obtain a stable numerical solution. Some test problems are solved using the proposed regularization-direct method to illustrate its efficiency for solving first kind Fredholm integral equations.

Validity of predictive equations for resting energy expenditure in Korean non-obese adults

  • Ndahimana, Didace;Choi, Yeon-Jung;Park, Jung-Hye;Ju, Mun-Jeong;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • 제12권4호
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Indirect calorimetry is the gold-standard method for the measurement of resting energy expenditure. However, this method is time consuming, expensive, and requires highly trained personnel. To overcome these limitations, various predictive equations have been developed. The objective of this study was to assess the validity of predictive equations for resting energy expenditure (REE) in Korean non-obese adults. SUBJECTS/METHODS: The present study involved 109 participants (54 men and 55 women) aged between 20 and 64 years. The REE was measured by indirect calorimetry. Nineteen REE equations were evaluated for validity, by comparing predicted and measured REE results. Predictive equation accuracy was assessed by determining percent bias, root mean squared prediction error (RMSE), and percentage of accurate predictions. RESULTS: The measured REE was significantly higher in men than in women (P < 0.001), but the difference was not significant after adjusting for body weight (P > 0.05). The equation developed in this study had an accuracy rate of 71%, a bias of 0%, and an RMSE of 155 kcal/day. Among published equations, the $FAO_{weight}$ equation gave the highest accuracy rate (70%), along with a bias of -4.4% and an RMSE of 184 kcal/day. CONCLUSIONS: The newly developed equation provided the best accuracy in predicting REE for Korean non-obese adults. Among the previously published equations, the $FAO_{weight}$ equation showed the highest overall accuracy. Regardless, at an individual level, the equations could lead to inaccuracies in a considerable number of subjects.

A New Approach for Motion Control of Constrained Mechanical Systems: Using Udwadia-Kalaba′s Equations of Motion

  • Joongseon Joh
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.61-68
    • /
    • 2001
  • A new approach for motion control of constrained mechanical systems is proposed in this paper. The approach uses a new equations of motion which is proposed by Udwadia and Kalaba and named Udwadia-Kalaba's equations of motion in this paper. This paper reveals that the Udwadia-Kalaba's equations of motion is more adequate to model constrained mechanical systems rather than the famous Lagrange's equations of motion at least for control purpose. The proposed approach coverts most of constraints including holonomic and nonholonomic constraints. Comparison of simulation results of two systems which are well-known in the literature show the superiority of the proposed approach. Furthermore, a special constrained mechanical system which includes nonlinear generalized velocities in its constraint equations, which has been considered to be difficult to control, can be controlled easily. It shows the possibility of the proposed approach to being a general framework for motion control of constrained mechanical systems with various kinds of constraints.

  • PDF