• Title/Summary/Keyword: 4-밸브 디젤엔진

Search Result 21, Processing Time 0.029 seconds

Numerical Analysis for Reduction of Fuel Consumption by Improvement of Combustion Condition in a Common Rail Diesel Engine Generator (커먼레일 디젤엔진 발전기의 연소상태 개선에 따른 연비절감을 위한 수치해석)

  • Kim, Seung Chul;Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.58-64
    • /
    • 2016
  • The main engine of a vehicle is used an common rail diesel engine for improving the efficiency of the whole load area. However, the generator engines is still used mechanical fuel injection valve drive cams. In addition, most of generator engines is applied a part-load operation of less than 50%. Therefore, diesel engine of vehicle set at 100% load is necessary to readjust in order to perform efficient operation because of part-load operation. In this study, the objective is to report the results of the part-load fuel consumption improvement by injection timing readjust to identify the operational characteristics of a generator engine currently operated in the facilities.

Fundamental Study on Degradation Evaluation of Marine Diesel Engine Exhaust Valve by Nondestructive Test (비파괴법에 의한 선박용 디젤엔진 배기밸브의 열화도 평가에 관한 기초적 연구)

  • Sim, K.H.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.51-56
    • /
    • 1999
  • The ultrasonic method, which is well known as nondestructive test method, is widely used to evaluate the material damage due to degradation. However, this method is just used for measuring the crack size and the thickness loss of the tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of marine diesel engine exhaust valve and to suggest the correlations between the ultrasonic characteristics and valve degradation. From the evaluation of the results obtained, the technique of using the ultrasonic property was founds to be a efficient method to evaluate the degree of marine diesel engine exhaust valve by nondestructive test.

  • PDF

Fundamental Study on Degradation Evaluation of Marine Diesel Engine Exhaust Valve by Time-frequency Analysis Method (II) (시간-주파수 해석법을 이용한 선박용 디젤엔진 배기밸브의 열화도 평가에 관한 기초적 연구 (II))

  • 김현수;심규현;안석환;남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.68-72
    • /
    • 2000
  • The ultrasonic method, which is well known as nondestructive test method, is widely used to evaluate the material damage due to degradation. However, this method is just used for measuring the crack size and the thickness loss of the tube. The purpose of this study is to investigate the application of the ultrasonic technique for the evaluation of marine diesel engine exhaust valve and to suggest the correlation between the ultrasonic characteristics and valve degradation. From the evaluation of the results obtained, the technique of using the ultrasonic property was founds to be a efficient method to degree of marine diesel engine exhaust valve by nondestructive test.

  • PDF

Study on the Combustion Characteristics of Light-Load RI-CNG Engine (저부하 라디칼 착화 압축천연가스 엔진의 성능연구)

  • Liu, Yu;Dong, Yong;Keom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • 본 연구는 라디칼 착화(Radical Ignition이하 RI) 기술을 적용한 부실직분식 CNG(Compressed Natural Gas) 엔진의 구동특성에 관한 것이다. 실험엔진은 단기통 디젤엔진을 개조하여 사용하였으며, 이는 부실식 디젤엔진처럼 연소실이 주실과 부실로 나누어져 있다. 부실에 분사된 CNG는 스파크플러그로 점화하며, 부실로 부터의 연소가스가 주실 희박 혼합기를 시켜 구동하는 엔진이다. RI 기술은 연소속도를 향상시킬 수 있다. 본 연구는 주로 저부하 RI-CNG 엔진의 성능을 연구하였다. 연료분사기간은 9 ms, 공기과잉률은 1.0, 1.2, 1.4로 하였다. 연료분사시기는 엔진의 배가밸브가 닫히는 ATDC $20^{\circ}CA$ 부터 $120^{\circ}CA$ 사이로, $20^{\circ}CA$ 간격으로 지각시켜 가며 실험하였다. 본 연구는 연료분사시기 및 공기과잉률이 연소최고압력 ($P_{max}$), 연소최고압력시기(${\Theta}_{pmax}$), 도시평균유효압력(IMEP), 사이클 변동계수($COV_{imep}$), 연소속도에 미치는 양향 등을 구하고 분석하였다.

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

A Study on the Characteristics and Application of E-EGR Valve for Light Duty Automotive Diesel Engine (차량용 소형디젤엔진의 배기 재순환용 전자식 밸브 특성과 적용에 관한 연구)

  • 송창훈;정용일;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.425-431
    • /
    • 2002
  • In this study the characteristics of E-EGR valve developed by electrical method were analysed and the feasibility of application to vehicles was evaluated. The engine of smart car applied for diesel passenger car of small-displacement size developed by common vehicle was used for this experiment. It was installed a 3-cylinder, $0.8\ell$, turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine (터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

A Study on the Effects of Intake Port Eccentricity on the In-cylinder Swirl Ratio Characteristics in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 편심이 실린더 내 선회비 특성에 끼치는 영향에 관한 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.157-169
    • /
    • 1997
  • The effects of intake port eccentricity on the characteristics of in-cylinder swirl ratio in a 4-valve diesel engine having the two intake ports; one is a helical intake port and the other is a tangential intake port were investigated by using the ISM(impulse swirl meter) in steady flow test rig. Swirl ratio($R_s$) and mean flow coefficient($C_{f(mean)}$) with valve eccentricity ratio($N_y$) and axial distance(Z/B) were measured. As the results from this experiment, the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by intake port eccentricity. There is a difference in the mass flowrate through the two intake ports, and the mass flowrate through the tangential intake port is 19% more than that of the helical intake port. Therefore, we could know that the effects of the mass flowrate ratio through each intake port besides intake port shape should be conidered.

  • PDF

Computational Approach to Improve Diesel Engine Coolant Flow Characteristics (디젤엔진 냉각수 유동특성 개선을 위한 수치해석적 접근방법)

  • Lee, Sung-Won;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1133-1136
    • /
    • 2010
  • 2600cc급 디젤엔진의 냉각수 유동특성 개선을 위한 수치해석적 방법을 제시하기 위하여 본 연구가 수행되었다. 실린더 블록 및 헤드의 유동특성 분석을 위하여 개스킷 냉각수 통로의 면적과 갯수가 중점적으로 고려되었다. 베이스 모델의 수치해석적 분석에서 입구측에 치우친 냉각수 홀의 배치에 의하여 1, 2번 실린더 헤드로만 주 유동이 발생되었다. 이러한 문제점을 개선하기 위하여 개스킷 냉각수 통로를 재설계하였다. 수정모델은 주 유동이 4번 실린더 측으로 유도되었으며, 배기밸브 사이의 유동도 개선되었다. 재설계과정에서 개스킷 냉각수통로의 전체면적을 고려치 않게 되면 유량이 줄어들게 되는 문제점이 발견되었다. 본 연구를 통하여 실린더 헤드와 블록사이의 냉각수 유동을 제어하는 개스킷의 중요성을 확인하였으며, 냉각수 유동특성 최적화는 개스킷 홀의 총 면적을 고려하여 냉각수의 총질량유량을 설계하여야 한다.

  • PDF

Overflow Valve and Performance Evaluation System for Diesel Cars based on Spring Load (스프링하중을 고려한 디젤차량용 오버플로우 밸브 성능평가)

  • Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.200-204
    • /
    • 2016
  • In this paper, we have estimated the performance of an overflow valve for EURO type CRDI(common rail direct injection) engine. In order to implement the overflow valve with friendly circumstance, it is necessity for considering spring load. Especially, the performance evaluation of diesel car with accuracy control will be considered a mileage improvement and circumstance regulation. In order to evaluate the performance of overflow valve, The leak test system checks the pressure, switching time and operating time under 3.0 bar below 100 cc, 3.3 bar among 150 cc and 200 cc, finally 4.0 bar upper 250 cc.