• 제목/요약/키워드: 4 Wheel Steering

검색결과 125건 처리시간 0.022초

전륜 조향용 전기식 작동기 피로수명 평가 (Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering)

  • 김영철;김현기;김동협;김상우
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.126-132
    • /
    • 2023
  • 최근 항공분야에서는 온실가스 배출 저감을 위한 친환경 기술이 강조되면서 전기를 주동력원으로 기계적인 직진, 회전 운동을 제어하는 전기식 작동기의 다양한 연구가 진행되고 있다. 본 연구에서는 단일통로 항공기 전륜조향용 전기식 작동기의 피로수명을 평가하였다. 구조해석을 통해 작동기의 취약부위들을 선정하여 이들에 대한 단위하중 응력표를 구축하였고, 각 하중 프로파일에 대한 대표응력을 계산하였다. 또한 낙수계수법으로 대표응력 그룹의 개별 프로파일을 추출하고, 이를 소재의 S-N 선도에 적용하여 개별 프로파일에 대한 손상을 계산하였다. 최종적으로 손상누적법칙으로 취약 부위들에서의 총 손상을 산출하였고, 단일통로 항공기 전륜조향용 전기식 작동기의 취약 부위들에 대한 피로수명을 평가하였다.

롤러형 바퀴를 갖는 이동로봇 개발 (Development of Roller Wheel Mobile Robot)

  • 김순철;이수영;최재석
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.250-257
    • /
    • 2014
  • In this paper, a new mobile robot, so called a rollerbot, is presented, which has single body and rugby-ball shaped roller wheel. A rollerbot has single point contact on ground and low energy consumption in motion because of the reduced friction. By changing center of mass using a balancing weight, a rollerbot is able to get steering force. The vertical position of mass center of the rollerbot in this paper is designed to lie inside radius of the roller wheel, so that to have stable equilibrium position. Thus, the posture and the steering control of the rollerbot can be easily done by changing the center of mass. Kinematics of the rollerbot is derived by transformation of differential motion in this paper.

승용형 농기계용 직진 자동조향장치 주행특성 연구 (Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery)

  • 원진호;전진택;홍영기;양창주;김경철;권경도;김국환
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.19-28
    • /
    • 2022
  • This paper introduces an automatic steering system for straight traveling capable of being mounted on drivable agricultural machinery which user can handle it such as a tractor, a transplant, etc. The modular automatic steering device proposed in the paper is composed of RTK GNSS, IMU, HMI, hydraulic valve, and wheel sensor. The path generation method of the automatic steering system is obtained from two location information(latitude and longitude on each point) measured by GNSS in advance. From HMI, a straight path(AB line) can be created by connecting latitude and longitude on each point and the device makes the machine able to follow the path. During traveling along the reference path, it acquires the real time position data every sample time(0.1s), compares the reference with them and calculates the lateral deviation. The values of deviation are used to control the steering angle of the machine using hydraulic valve mounted on the axle of front wheel. In this paper, Pure Pursuit algorithm is applied used in autonomous vehicles frequently. For the analysis of traveling characteristics, field tests were executed about these conditions: velocity of 2, 3, 4km/h which is applied to general agricultural work and ground surface of solid(asphalt) and weak condition(soil) such as farmland. In the case of weak ground state, two experiments were executed about no-load(without work) and load(with work such as plowing). The maximum average deviations were presented 2.44cm, 7.32cm, and 11.34cm during traveling on three ground conditions : asphalt, soil without load and with load(plowing).

자동차 바퀴 방향 지시기 개발에 관한 연구 (A Study on the development of wheels' direction indicator)

  • 조종덕;신승식
    • 전자공학회논문지 IE
    • /
    • 제43권4호
    • /
    • pp.76-82
    • /
    • 2006
  • 자동차 바퀴 방향 지시기란 운전자가 차 내부에서 자동차의 바퀴 방향을 실시간으로 알 수 있도록 전자 장비에 바퀴의 방향을 표시해주는 시스템으로서, 본 연구에서는 자동차 핸들의 회전량을 측정하여 LED(Light Emitted Diode)와 LCD(Liquid Crystal Display)에 자동차 바퀴에 대한 방향 정보를 표시하는 시스템을 개발하고자 한다. 즉, 이렇게 자동차의 핸들 회전량을 측정하여 그 측정 데이터를 데이터 처리부에 적절하게 적용함으로써 자동차 내부에서 운전자가 인지할 수 있도록 해준다면 주차된 차를 주행하기 위해 자동차 창문을 열고 바퀴 방향을 봐야하는 등의 번거로움을 해소시킬 수 있을 것이라 사료된다.

A Review of Rear Axle Steering System Technology for Commercial Vehicles

  • 하룬 아흐마드 칸;윤소남;정은아;박정우;유충목;한성민
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.152-159
    • /
    • 2020
  • This study reviews the rear or tag axle steering system's concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.

비선형 타이어모델을 이용한 4WS 자동차의 주행특성 해석 (Dynamic Characteristics Analysis of Four Wheel Steering Vehicles Using Nonlinear Tire Model)

  • 김형내;김석일;김동룡;김건상
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.110-119
    • /
    • 1997
  • Four wheel steering(4WS) systems which can control the lateral and yaw motions of vehicles by steering front and rear wheels simultaneously, have been regarded as effective for improving the stability and handing performance of vehicles. However, since the 4WS systems depend only on the lateral force of tire, they have some limitation due to the nonlinear characteristics of tire related with the saturation phenomenon of lateral force to the slip angle of tire in a near-limit-performance maneuvering range. In this study, in other to evaluate the effect of nonlinear characteristics of tire on the dynamic performance of vehicles, a new concept for driving the cornering stiffness of nonlinear tire by using the "Magic Formula" tire model is proposed. In addition, the nonlinear 4WS vehicle model is constructed based on the proposed cornering stiffness of nonlinear tire. It is noted from simulation that the nonlinear characteristics of tire affect greatly on the 4WS vehicle performance.rformance.

  • PDF

버링 가공을 이용한 자동차 요크 제품의 가공 공정 설계 (Process Design of Automobile Steering Yoke with burring)

  • 김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.151-154
    • /
    • 2000
  • The yoke is used for joining the mechanical element of a spider and shaft in the steering system of automobiles. Conventional yoke forming processes are too complicated such as 4 stages bending and forming. The weight of yoke is also heavy than other components. New process is necessary to reduce the product weight to improve the strength and to reduce the costs. Process designed to reduce number of forming stages and to reduce its weight. To check the strength the stress analyses are performed between conventional yoke and developed one.

  • PDF

Development of Optimized Headland Turning Mechanism on an Agricultural Robot for Korean Garlic Farms

  • Ha, JongWoo;Lee, ChangJoo;Pal, Abhishesh;Park, GunWoo;Kim, HakJin
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.273-284
    • /
    • 2018
  • Purpose: Conventional headland turning typically requires repeated forward and backward movements to move the farming equipment to the next row. This research focuses on developing an upland agricultural robot with an optimized headland turning mechanism that enables a $180^{\circ}$ turning positioning to the next row in one steering motion designed for a two-wheel steering, four-wheel drive agricultural robot named the HADA-bot. The proposed steering mechanism allows for faster turnings at each headland compared to those of the conventional steering system. Methods: The HADA-bot was designed with 1.7-m wide wheel tracks to travel along the furrows of a garlic bed, and a look-ahead path following algorithm was applied using a real-time kinematic global positioning system signal. Pivot turning tests focused primarily on accuracy regarding the turning radius for the next path matching, saving headland turning time, area, and effort. Results: Several test cases were performed by evaluating right and left turns on two different surfaces: concrete and soil, at three speeds: 1, 2, and 3 km/h. From the left and right side pivot turning results, the percentage of lateral deviation is within the acceptable range of 10% even on the soil surface. This U-turn scheme reduces 67% and 54% of the headland turning time, and 36% and 32% of the required headland area compared to a 50 hp tractor (ISEKI, TA5240, Ehime, Japan) and a riding-type cultivator (CFM-1200, Asia Technology, Deagu, Rep. Korea), respectively. Conclusion: The pivot turning trajectory on both soil and concrete surfaces achieved similar results within the typical operating speed range. Overall, these results prove that the pivot turning mechanism is suitable for improving conventional headland turning by reducing both turning radius and turning time.

고무차륜형 AGT 주행장치의 진동피로해석 (Vibration Fatigue for the Bogie frame of the Rubber Wheel AGT)

  • 유형선;윤성호;변상윤;편수범
    • 한국철도학회논문집
    • /
    • 제3권3호
    • /
    • pp.117-124
    • /
    • 2000
  • The rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other steering one. Both are important vehicular structure to support the whole running vehicle and passenger loads. This paper deals with the static analysis for the two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamic analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, I-DEAS and NASTRAN show that maximum stresses do not exceed the yield strength level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except for the case of a lateral loading. It is also observed that the steering type shows a characteristics of low frequency behavior during a course of searching for structurally weak areas to be stiffened. The vibrational fatigue analysis for each bogie frame depends on the loading time history conditions which is applied. Time History Central Database List in the NASTRAN package. Subsequent1y, the fatigue life of bogie type is longer than the steering type.

  • PDF

소형항공기 올레오 타입 전방착륙장치 충격해석 (Impact Analysis of Oleo-pneumatic Nose Strut for Light Aircraft)

  • 박일경;최선우;장재원
    • 항공우주기술
    • /
    • 제6권1호
    • /
    • pp.19-28
    • /
    • 2007
  • 본 연구에서는 올레오-뉴메틱(Oleo-pneumatic) 완충장치와 차등 제동 조향(Differential Braking Steering)을 위한 캐스터링 휠 포크(Castering Wheel Fork)가 적용된 소형항공기용 전방착륙장치의 충격하중 해석을 위한 비선형 2 자유도 수학적 모델을 생성하고, 수치해석 기법을 이용하여 시간에 따른 충격응답을 구하였다. 생성된 전방착륙장치의 수학적 모델은 타이어의 충격 시 동적 특성과 스트루트 기울기, 캐스터에 의한 모멘트, 타이어 접촉과 조향 등에 의해 발생하는 측면하중에 의한 올레오 스트루트 내부의 마찰 특성 등의 비선형 요소들을 포함하고 있다. 또 생성된 운동방정식의 수치해석은 4차 Runge-Kutta 방식을 이용하였으며, 운동방정식 및 수치해의 정확도를 평가하기 위한 타 항공기에 기 적용된 전방 착륙장치의 낙하시험 결과와의 비교 검증과정을 수행하였다.

  • PDF