• Title/Summary/Keyword: 4 점 굽힘 시험

Search Result 72, Processing Time 0.026 seconds

Development of a Pure Bending Test Machine and Bending Collapse Characteristics of Rectangular Tubes (순수굽힘 시험기개발 및 사각관부재의 굽힘붕괴특성 연구)

  • 강신유;장인배;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.222-233
    • /
    • 1998
  • A 4-point pure bending res machine is developed the evaluate the pure vending moment-rotation properties of the thin-walled tubes without imposing shear and tensile forces. The moment-rotation properties of the thin-walled tubes are measured up to and beyond collapse with the pure bending test machine. The test results are compared with those of finite element analyses and existing analytical solution.

  • PDF

표면 응력구배시의 잔류응력 측정에 관한 연구

  • 이택순;최병길;전상윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.761-768
    • /
    • 1990
  • 본 연구에서는 4-점 굽힘시험 장치를 이용하여 구멍의 표면에서 응력구배를 발생시켰을 때 (구멍의 깊이 방향으로는 응력구배가 없음), 구멍을 뚫기전 표면의 응 력구배를 고려하여 산정한 하중상태와 구멍을 뚫은 후 이완되는 잔류응력을 비교하였 다. 또한 잔류응력 측정시 구멍의 진원도에 대하여 실험적으로 연구하였으며, 구멍 직경의 측정오차가 잔류응력 측정에 미치는 영향을 분석하였다. 연구결과 4-점 굽힘 시험시 하중상태는 응력구배를 고려하여 계측되어야 하며, 응력구배장에서의 잔류응력 을 로젯트 게이지 중심에 존재하는 균일응력으로 나타낼 수 있다.

Various Dynamic Behavior of Three Point Bend Specimens under Rapid Loading (빠른 하중을 받고 있는 3점 굽힘 시험편들의 다양한 동적거동)

  • Lee, Ouk-Sub;Cho, Jae-Ung;Han, Moon-sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.178-188
    • /
    • 1999
  • 충격하중을 받는 시험편 높이의 1/4 길이의 notch를 가진 3점 굽힘시험편들의 기계적 거동에 관한 컴퓨터 시뮬레이션을 하고 이 시뮬레이션에 대한 실험적 검증도 하여 그 타당성을 입증하였다. 시험편들의 양쪽 가장자리(지지점)에서 작용되어지는 여러 가지의 하중속도에 대한 경우들과 탄소성 von Mises 재질인 모델들을 시뮬레이션에 포함시켰으며 이들에 대한 결과들을 간극 개구 변위, 반력, 크랙선단 개구 변위 및 변형률등이 속도에 의존되는 재질(점소성 재질)에 대한 시뮬레이션 결과와 비교하였다. 또한 여러가지의 동적 하중을 받는 상황하에서의 안정성이 본 연구의 시뮬레이션을 통하여 비교되었으며 그 차이점들이 규명되었다.

  • PDF

A Study on 4 Point Bending Strength of Carbon/epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Open Hole Damage (카본/에폭시 면재 및 허니컴 코어 샌드위치 복합재 구조의 구멍 손상에 의한 4점 굽힘 강도 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • In this study, it was performed damage assessment and repair of small scale aircraft adopted on composite. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole were compared with the results of no damaged specimen test. In addition, The damaged composite structure was repaired using external patch repair method after removing damaged area. After that, this study presents comparison results of the experimental investigation between the damaged and the repaired specimen. It was found that the bending strength of repaired specimen was recovered up to 95% of undamaged specimen.

An Experimental Study on the Failure Characteristics of Flip Chips in Cyclic Bending Test (플립칩의 반복 굽힘 시험 시 파손 특성에 관한 실험적 연구)

  • Lee, Yong-Sung;Jeong, Jong-Seol;Kim, Hong-Seok;Shin, Ki-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.362-368
    • /
    • 2009
  • In general, circuit board assemblies experience various mechanical loadings during assembly and in actual use. The repeated cyclic bending can cause electrical failures due to circuit board cracks, solder interconnects cracks, and the component cracks. In this paper, we report on the failure characteristics of semiconductor chips under the repeated cyclic bending. We first describe a new 4-point bending tester, which is developed according to JEDEC standard No. 22B113. The performance of the tester is then estimated through actual experiments. Test results reveal that the cracks first occur on the outer balls around 20,000 cycles and gradually propagate to the inner balls where cracks are found around 70,000 cycles.

  • PDF

Effects of specimens dimension on the flexural properties and testing reliability of dental composite resin (치과용 복합레진의 굽힘 특성과 시험 신뢰도에 미치는 시편 크기의 영향)

  • Im, Yong-Woon;Hwang, Seong-sig;Kim, Sa-hak;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.273-280
    • /
    • 2017
  • The aim of the present study was to investigate the effects of specimen dimension on the flexural properties and testing reliability of dental composite resin. The composite resin was prepared experimentally by mixing a resin matrix with silanated micrometer glass filler at 50 vol%. Flexural specimens with various dimension in specimen's width were fabricated by light curing using a split metal mold; $25{\times}2{\times}2mm$, $25{\times}2{\times}4mm$, $25{\times}2{\times}6mm$ in length ${\times}$ height ${\times}$ width. The flexural strength and modulus were determined according to ISO 4049 test protocol at a span length of 20 mm (normal-flexural strength; NFS). Another flexural test was conducted using mini-sized specimens ($12{\times}2{\times}2mm$, $12{\times}2{\times}4mm$, $12{\times}2{\times}6mm$) from the broken specimens at a span length of 10 mm (mini-flexural strength; MFS). Data were analyzed with ANOVA and Duncan's post-hoc test and the test reliability was evaluated by Weibull analysis. Results showed that there are generally no significant difference in flexural strength with the increase in the specimen width in NFS and MFS tests. However, the test reliability of flexural strength based on Weibull analysis was largely changed with the variables in the dimension of width and span length. The flexural modulus of NFS was increased as the dimension of specimens width increased while there was no trend in flexural modulus of MFS test. Overall results recommend that the evaluation of flexural properties and the reliability of dental composite resins should be performed with more than one test method.

The Mechanical Properties of CFRC under High Temperature (CFRC 복합재료의 기계적 고온특성)

  • Song, Gwan-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.258-265
    • /
    • 2001
  • Compression and bending test have been conducted to evaluate the mechanical performance of CFRC at several different temperature up to $2000^{\circ}C$ . Tools and several grips for the test at high temperature were designed to obtain mechanical properties of CFRP. A major cause of increasing strength according to increasing the density and the temperature were analyzed. SEM method was utilized to find out the damage and the fracture mechanism. The new simple equation for the L(span length)/h(beam height) of specimens and for the failure criterion on the 4 point bending were proposed.

  • PDF

Progressive Damage Analysis of Plain Weave Fabric CFRP Orthogonal Grid Shell Under Bending Load (굽힘 하중을 받는 평직물 CFRP 직교 격자 쉘의 점진적 손상 해석)

  • Lim, Sung June;Baek, Sang Min;Kim, Min Sung;Park, Min Young;Park, Chan Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.256-265
    • /
    • 2019
  • In this paper, the progressive damage of an orthogonal grid shell fabricated with plain weave fabric CFRP under bending load was investigated. The orthogonal grids were cured with the bottom composite shell. Progressive damage analysis of an orthogonal grid shell under bending was performed using nonlinear finite element method with Hashin-Rotem failure criterion and Matzenmiller-Lubliner-Taylor(MLT) model. In addition, the three - point bending test for the structure was carried out and the test results were compared with the analysis results. The comparison results of the strain and displacement agreed well. The damage area estimated by the progressive damage analysis were compared with the visual inspection and ultrasonic non-destructive inspection.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재의 손상후 잔류강도 평가)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.137-142
    • /
    • 2001
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.

  • PDF

Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties (Al5052/CFRP 복합소재의 표면특성이 접착성과 기계적특성에 미치는 영향)

  • Lee, Min-Sik;Kim, Hyun-Ho;Kang, Chung-Gil
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.295-302
    • /
    • 2013
  • In this study, Al5052/CFRP composites were fabricated for an automobile component by compression molding process inside a U-channel mold. Al5052 sheet were treated by sand blasting with two different particle sizes. Accordingly, surface roughness (Ra) values of $4.25{\mu}m$ and $1.85{\mu}m$ were obtained for the treated Al5052 sheets. The effect of surface roughness of Al5052 sheets on the adhesion and mechanical properties of Al5052/CFRP composites have been evaluated. Shear lap test and 3-point bending test were conducted. Results showed that the shear load for the composite fabricated by using the treated Al5052 sheets with Ra value of $1.85{\mu}m$ and $4.25{\mu}m$ were 3 and 5 times higher than Ra value of $0.73{\mu}m$ of the composite fabricated by using the untreated sheet. The bending stress of 200MPa was obtained for the composite fabricated with untreated Al5052 sheets. The bending stress increased to 400MPa when the composite fabricated from treated sheets. However, the bending stress was not influenced by treating condition through sand blasting.