• 제목/요약/키워드: 4,4'-diaponeurosporene

검색결과 3건 처리시간 0.017초

4,4'-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity

  • Kim, Mibang;Jung, Dong-Hyun;Seo, Dong-Ho;Park, Young-Seo;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.63-69
    • /
    • 2021
  • Carotenoids, which have biologically beneficial effects and occur naturally in microorganisms and plants, are pigments widely applied in the food, cosmetics and pharmaceutical industries. The compound 4,4'-diaponeurosporene is a C30 carotenoid produced by some Lactobacillus species, and Lactobacillus plantarum is the main species producing it. In this study, the antioxidant activity of 4,4'-diaponeurosporene extracted from L. plantarum subsp. plantarum KCCP11226 was examined. Maximum carotenoid content (0.74 ± 0.2 at A470) was obtained at a relatively low temperature (20℃). The DPPH radical scavenging ability of 4,4'-diaponeurosporene (1 mM) was approximately 1.7-fold higher than that of butylated hydroxytoluene (BHT), a well-known antioxidant food additive. In addition, the ABTS radical scavenging ability was shown to be 2.3- to 7.5-fold higher than that of BHT at the range of concentration from 0.25 mM to 1 mM. The FRAP analysis confirmed that 4,4'-diaponeurosporene (0.25 mM) was able to reduce Fe3+ by 8.0-fold higher than that of BHT. Meanwhile, 4,4'-diaponeurosporene has been confirmed to be highly resistant to various external stresses (acid/bile, high temperature, and lysozyme conditions). In conclusion, L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a functional antioxidant, may be a potentially useful strain for the development of functional probiotic industries.

Enhanced Production of C30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T

  • Siziya, Inonge Noni;Yoon, Deok Jun;Kim, Mibang;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.892-901
    • /
    • 2022
  • The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25℃ incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.

Isolation of Lactobacillus plantarum subsp. plantarum Producing C30 Carotenoid 4,4'-Diaponeurosporene and the Assessment of Its Antioxidant Activity

  • Kim, Mibang;Seo, Dong-Ho;Park, Young-Seo;Cha, In-Tae;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1925-1930
    • /
    • 2019
  • Carotenoids are organic pigments with antioxidant properties and are widespread in nature. Here, we isolated five microbes, each forming yellow-colored colonies and harboring C30 carotenoid biosynthetic genes (crtM and crtN). Thereafter, Lactobacillus plantarum subsp. plantarum KCCP11226, which showed the highest carotenoid production, was finally selected and the produced pigment was identified as C30 carotenoid 4,4'-diaponeurosporene. This strain exhibited the highest survival rate under oxidative stress and its carotenoid production was also enhanced after exposure to 7 mM H2O2. Moreover, it showed the highest ability to scavenge DPPH free radical. Our results suggested that L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a natural antioxidant, may be a functional probiotic.