Browse > Article
http://dx.doi.org/10.4014/jmb.1909.09007

Isolation of Lactobacillus plantarum subsp. plantarum Producing C30 Carotenoid 4,4'-Diaponeurosporene and the Assessment of Its Antioxidant Activity  

Kim, Mibang (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)
Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University)
Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University)
Cha, In-Tae (Microorganism Resources Division, National Institute of Biological Resources)
Seo, Myung-Ji (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.12, 2019 , pp. 1925-1930 More about this Journal
Abstract
Carotenoids are organic pigments with antioxidant properties and are widespread in nature. Here, we isolated five microbes, each forming yellow-colored colonies and harboring C30 carotenoid biosynthetic genes (crtM and crtN). Thereafter, Lactobacillus plantarum subsp. plantarum KCCP11226, which showed the highest carotenoid production, was finally selected and the produced pigment was identified as C30 carotenoid 4,4'-diaponeurosporene. This strain exhibited the highest survival rate under oxidative stress and its carotenoid production was also enhanced after exposure to 7 mM H2O2. Moreover, it showed the highest ability to scavenge DPPH free radical. Our results suggested that L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a natural antioxidant, may be a functional probiotic.
Keywords
Lactobacillus plantarum subsp. plantarum; carotenoid; 4,4'-diaponeurosporene; antioxidant; isolation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Suzuki Y, Kosaka M, Shindo K, Kawasumi T, Kimoto-Nira H, Suzuki C. 2013. Identification of antioxidants produced by Lactobacillus plantaum. Biosci. Biotechnol. Biochem. 77: 1299- 1302.   DOI
2 Steiger S, Perez-Fons L, Fraser PD, Sandmann G. 2012. Biosynthesis of a novel $C_{30}$ carotenoid in Bacillus firmus isolates. J. Appl. Microbiol. 113: 888-895.   DOI
3 Wu Y, Ma Y, Li L, Yang X. 2018. Preparation and antioxidant activities in vitro of a designed antioxidant peptide from pinctada fucata by recombinant Escherichia coli. J. Microbiol. Biotechnol. 28: 1-11.   DOI
4 Jaswir I, Noviendri D, Hasrini RF, Octavianti F. 2011. Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5: 7119-7131.
5 Ducrey Sanpietro LM, Kula MR. 1998. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14: 1007-1016.   DOI
6 Del Campo JA, Moreno J, Rodriguez H, Angeles Vargas M, Rivas Joaquin, Guerrero MG. 2000. Carotenoid content of chlorophycean microalgae_factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 76: 51-59.   DOI
7 Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: a colourful tale. Annu. Rev. Microbiol. 51: 629-659.   DOI
8 Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488.   DOI
9 Ninet L, Renaut J, Tissier R. 1969. Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol. Bioeng. 11: 1195-1210.   DOI
10 Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919.   DOI
11 Miyoshi A, Rochat T, Gratadoux JJ, Loir YL, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.
12 Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, et al. 2007. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 6: 29.   DOI
13 Hagi T, Kobayashi M, Kawanoto S, Shima J, Nomura M. 2013. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J. Appl. Microbiol. 114: 1763-1771.   DOI
14 Young AJ, Lowe GW. 2001. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385: 20-27.   DOI
15 Garrido-Fernandez J, Maldonado-Barragan A, Caballero-Guerrero B, Homero-Mendez D, Ruiz-Barba JL. 2010. Carotenoid produxtion in Lactobacillus plantarum. Int. J. Food Microbiol. 140: 34-39.   DOI
16 Desmond C, Fitzgerald GF, Stanton C, Ross RP. 2004. Improved stress tolerance of Gro ESL over producing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70: 5929-5936.   DOI
17 Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot JP, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry: an efficient way to identify carotenoid producing lactic acid bacteria. Syst. Appl. Microbiol. 39: 115-121.   DOI
18 Ben-Amotz A, Avron M. 1983. On the factors which determine massive ${\beta}$-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant. Physiol. 72: 593-597.   DOI
19 Hagi T, Kobayashi M, Nomura M. 2014. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiol. Lett. 350: 223-230.   DOI
20 Bruno-Barcena JM, Azcarate-Peril MA, Hassan HM. 2010. Role of antioxidant enzymes in bacterial resistance to organic acids. Appl. Environ. Microbiol. 76: 2747-2753.   DOI
21 Kimoto-Nira H, Kobayashi M, Nomura M, Sasaki K, Suzuki C. 2009. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media. Int. J. Food Microbiol. 131: 183-188.   DOI
22 Miyoshi A, Rochat T, Gratadoux JJ, Loir YL, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.
23 Neviani E, Carminati D, Veaux M, Hermier J, Giraffa G. 1991. Characterization of Lactobacillus helveticus strains resistant to lysozyme. Lait 71: 65-73.   DOI
24 Kobayashi M, Kakizono T, Nagai S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873.   DOI
25 Hagi T, Kobayashi M, Nomura M. 2014. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus. FEMS Microbiol. Lett. 362: 223-230.
26 Lim HS, Cha I, Roh SW, Shin H, Seo M. 2017. Enhanced producion of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a korean fermented food. J. Microbiol. Biotechnol. 27: 450-459.   DOI
27 Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Biotechnol. 176: 7719-7726.
28 Chooruk A, Piwat S, Teanpaisan R. 2017. Antioxidant activity of various oral Lactobacillus strains. J. Appl. Microbiol. 123: 271-279.   DOI
29 Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, et al. 2014. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front. Microbiol. 5: 100.   DOI
30 Manimala MRA, Murugesan R. 2014. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. Isolated from natural source. J. Appl. Nat. Sci. 6: 649-653.   DOI
31 Jeong S, Kang CK, Choi YJ. 2018. Metabolic engineering of Deinococcus radiodurans for the production of phytoene. J. Microbiol. Biotechnol. 28: 1691-1699.   DOI
32 Clauditz A, Resch A, Wieland KP, Peschel A, Gotz F. 2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74: 4950-4953.   DOI
33 Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, et al. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75: 3296-3306.   DOI
34 Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidnat activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275.   DOI
35 Marova I, Carnecka M, Halienova A, Breierova E, Koci R. 2010. Production of carotenoid-/ergosterol-supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol. Biotechnol. 48: 56-61.
36 Jeong JC, Lee IY, Kim SW, Park YH. 1999. Stimulation of ${\beta}$-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotechnol. Lett. 21: 683-686.   DOI
37 Reyes LH, Gomez JM, Kao KC. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21: 26-33.   DOI
38 Bouayed J, Bohn T. 2010. Exogenous antioxidants-doubledeged swords in cellular redox state. Oxidative Med. Cell. Longev. 3: 228-237.   DOI