• Title/Summary/Keyword: 4$^{\circ}C$ pretreatment

Search Result 319, Processing Time 0.026 seconds

Cytological Analysis of Microspores during Temperature Pretreatment in Anther Culture of Capcicum annuum L. (고추의 약배양 시 온도 전처리에 따른 소포자의 세포학적 변화 분석)

  • 김문자;장인창
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.263-271
    • /
    • 2001
  • Inoculated anthers of Capsicum annuum L. were subjected to 4 and 32$^{\circ}C$ pretreatment and their influence on the microspore viability, early cytological changes and the induction frequency of microspore embryo was investigated. Viability of freshly isolated microspores was between 62 and 64%. During temperature pretreatment, microspore viability showed a rapid decrease and this tendency enhanced with the 32$^{\circ}C$ pretreatment. Irrespective of temperature pretreatment, microspore viability declined to nearly zero after nine days. Before temperature pretreatment, most of the microspores in anthers were at late uninucleate stage. Several types of multinuclear microspores appeared from the 2 day after culture onwards, together with many degenerated and non-induced microspores. The 32$^{\circ}C$ pretreatment gave higher proportions of embryogenic microspore than other treatment. However, the temperature pretreatment had no clear effect on the frequencies of symmetrical binucleate rnicrospore. The multinucleate grains might originate either by symmetrical or asymmetrical division. After 2 days of pretreatment at 25 and 32$^{\circ}C$ , degenerated microspore increased above 50%. In contrast, during 4$^{\circ}C$ treatment, nucleus of most microspores remained intact for 14 days. The 32$^{\circ}C$ pretreatment produced more embryos than 4$^{\circ}C$ treatment. The most effective period of 32$^{\circ}C$ pretreatment was 4 days. In contrast, effective period of 4$^{\circ}C$ pretreatment was 2 days and longer time had deleterious effect on induction of microspore embryo.

  • PDF

The Influence of Temperature Pretreatment on the Production of Microspore Embryos in Anther Culture of Capsicum annuum L. (고추 (Capsicum annuum L.)의 약배양 시 온도 전처리가 소포자배 발생에 미치는 영향)

  • 김문자
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.71-76
    • /
    • 1999
  • Anthers of two hot pepper cultivars, Milyang-jare and Geryongsan-jare, were cultured on MS medium containing 0.1 mg/L 2,4-D and 0.1 mg/L kinetin. The influence of pretreatment at 4$^{\circ}C$ and 32$^{\circ}C$ on induction of microspore embryo was investigated. Milyang-jare was superior to the Geryongsan-jare in microspore embryo induction. The 32$^{\circ}C$ pretreatment increased embryo induction compared to the 4$^{\circ}C$ pretreatment while the 4$^{\circ}C$ pretreatment stimulated callus induction. Microspore embryos were regenerated to plantlets in the same medium or hormone free medium at 32$^{\circ}C$ treatment but most embryos failed to develop directly into plantlets at 4$^{\circ}C$ treatment. The optimal period of the 32$^{\circ}C$ pretreatment was 3 days in Milyang-jare and 6 days in Geryongsan-jare. The 32$^{\circ}C$ pretreatment was essential for induction and growth of microspore embryo in pepper.

  • PDF

Changes in the Quality Characteristics of Autoclaving on Salmon Frame with Citric Acid Pretreatment (구연산 처리 연어 frame의 연화 후 저장 중 품질 변화)

  • LIM, Hyun-Jung;PARK, Seul-Ki;KIM, Bo-Kyoung;LEE, Won-Kyung;MIN, Jin-Ki;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.973-980
    • /
    • 2015
  • This study was done to investigate the quality characteristics of salmon frame with citric acid pretreatment. Sliced salmon frame samples were cured in soy sauce, sugar, pepper, and sodium nitrate for 12 h and then dried at 3 h and then dried at $60^{\circ}C$ for 3 h. As the autoclaving at $130^{\circ}C$ for 15 min, the pH, moisture content, crude ash, crude fat, crude protein, acid value (AV), peroxide value (POV), volatile basic nitrogen (VBN), trimethylamine (TMA), total plate count and E. coli were measured at $4^{\circ}C$, $25^{\circ}C$ and $35^{\circ}C$ of storage days. The AV, POV, VBN, TMA and total plate count for all samples significantly increased as during storage days (p<0.05). All samples of storage, for autoclaving on salmon frame, there were no growth on E.coli. In the making of autoclaving on salmon frame, technologies for more safety from microbial growth should accompany pretreatment with citric acid.

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.

The Effect of Enzymatic Hydrolysis by Ethanol Organosolv Pretreatment of Corn Stover (에탄올 유기용매 전처리를 이용한 옥수수대의 효소당화)

  • Park, Jang Han;Kim, Tae Huyn;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2016
  • This study is for the effective pretreatment and saccharification of lignocellulosic biomass for a transport fuel receiving attention. The waste water during the pretreatment of biomass is major factor for determining the price of biofuel. Therefore, we conducted high concentration of organosolv pretreatment for decline waste water and reusing the solvent. We confirmed effect of organosolv pretreatment by components analysis and enzymatic hydrolysis of pretreated biomass. The corn stover was used for and 99.5 wt% of ethanol as a organosolv pretreatment. The pretreatment condition was varied 130 to $190^{\circ}C$ during the designated reaction times and the effect of pretreatment was investigated by enzymatic hydrolysis. The highest glucose conversion was more than 68% the pretreatment condition of $190^{\circ}C$ for 70 min or more. The solid remaining was more than 70% and almost of cellulose and hemicellulose were survived.

Catalytic Combustion of Acetaldehyde by Metal Phthalocyanines (금속 프탈로시아닌을 이용한 아세트알데히드의 촉매연소)

  • 서성규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2000
  • Catalytic combustion of acetaldehyde has been investigated as a representative of unpleasant odor by its reaction with metal-phthalocyanines(PC). The experiment was conducted at the reaction temperature of 200~41$0^{\circ}C$ and the concentratio of acetaldehyde in air at the range of 0.07~0.94 mole% The pretreated metal-PC has been characterized by UV-VIS and XRD analysis. According to this study catalytic activity of metal -PC was improved by air pretreatment at 45$0^{\circ}C$ for 1hr. Under this pretreatment condition Co-PC and Cu($\alpha$)-PC were destroyed and new metal oxides were formed such as Co3O4 and CuO respectively. However Zn-PC retained its basic structure even afte air pretreatment. The order of catalytic activity on acetaldehyde combustion was summarized as follows : Zn-PC$\alpha$)-PC. It was found that the complete combustin of acetaldehyde with Cu($\alpha$)-PC was accomplished at its concentrations below 0.2mole% (32$0^{\circ}C$) and 0.6 mole%(35$0^{\circ}C$) in air.

  • PDF

Influence of Growth Environment of Anther - Donor Plant and Chilling treatments to Flower Bud on Haploid Plantlets Production in Anther culture of Nicotiana tabacum L. (연초 약배양시 Anther-donor 식물체의 생육조건 및 약의 저온처리가 반수체 출현빈도에 미치는 영향)

  • 금완수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.64-68
    • /
    • 1994
  • The present experiments were conducted to investigate some of the factors affecting the number of haploids derived from anther culture of Nicotiana tabacum. Anther - donor plants grown under controlled environment room at 3$0^{\circ}C$ yielded more haploid than room at 18, 25 and 26-22-18$^{\circ}C$ in anther culture. Donor plants starved of fertilizer yielded more haploids as compared to those of the well fed with fertilizer in anther culture. Pretreatment of exercised flower bud at 5$^{\circ}C$ was shown to be more effective in anther culture than pretreatment at 7 and 1$0^{\circ}C$, and the optimum temperature and period of pretreatment were 4 or 6 days at 5$^{\circ}C$.

  • PDF

Pretreatment of Helianthus tuberosus Residue by Two-Stage Flow Through Process (2단 흐름형 침출공정에 의한 돼지감자 줄기의 전처리)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.417-424
    • /
    • 2015
  • In this study, the pretreatment of Helianthus tuberosus residue had been performed. The two-stage pretreatment on flow-through process were applied in the interests of increase of sugar production yield on enzymatic saccharification. The delignification by aqueous ammonia and the fractionation of hemicellulose by sulfuric acid solution as pretreatment solution were confirmed for effects of enzymatic saccharification. Two-stage pretreatment process was performed using aqueous ammonia and sulfuric acid. The first step was performed with aqueous ammonia for 40 min at $163.2^{\circ}C$ and the second step was performed with sulfuric acid solution for 20 min at $169.7^{\circ}C$. And then, the first step was performed with sulfuric acid solution and the second step was pretreated with aqueous ammonia. At this time, the glucose production was 30.7 g and the glucose yield was 72.4% in the first step process with aqueous ammonia. And, the glucose production was 20.9 g and the glucose yield was 49.3% in the first step process with sulfuric acid solution.

Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions

  • Mad-Ali, Sulaiman;Benjakul, Soottawat;Prodpran, Thummanoon;Maqsood, Sajid
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.845-854
    • /
    • 2016
  • Characteristics and properties of gelatin from goat skin pretreated with NaOH solutions (0.50 and 0.75 M) for various times (1 to 4 days) were investigated. All gelatins contained ${\alpha}$-chains as the predominant component, followed by ${\beta}$-chain. Gelling and melting temperatures of those gelatins were $23.02^{\circ}C$ to $24.16^{\circ}C$ and $33.07^{\circ}C$ to $34.51^{\circ}C$, respectively. Gel strength of gelatins increased as NaOH concentration and pretreatment time increased (p<0.05). Pretreatment for a longer time yielded gelatin with a decrease in $L^*$-value but an increase in $b^*$-value. Pretreatment of goat skin using 0.75 M NaOH for 2 days rendered the highest yield (15.95%, wet weight basis) as well as high gel strength (222.42 g), which was higher than bovine gelatin (199.15 g). Gelatin obtained had the imino acid content of 226 residues/1,000 residues and the gelatin gel had a fine and ordered structure. Therefore, goat skin gelatin could be used as a potential replacer of commercial gelatin.

Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw (암모니아수 침지 전처리 공정을 이용한 볏짚의 저온 동시당화발효)

  • Jang, Suh Yoon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • Physical and chemical barriers, caused by the close association of the main components of cellulosic biomass, hinder the hydrolysis of cellulose to fermentable sugars. Since the main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose, development of an effective pretreatment process has been considered to be important. In this study, SAA (Soaking in Aqueous Ammonia) was chosen as pretreatment because this is the simple and low-cost method. Rice straw of which the production is outstandingly high in domestic agriculture residues in Korea was chosen as raw material. SSA pretreatment with various reaction time of 3 h to 72 h was tested. The enzymatic hydrolysis and SSF (Simultaneous Saccharification and Fermentation) were performed at three different temperature (30, 40 and $50^{\circ}C$) to investigate performance of SSF upon various pretreatment conditions. As a result, this SAA treated-rice straw was found to have great potential for effective enzymatic hydrolysis and SSF with lower enzyme dosage at lower temperature ($30^{\circ}C$) than its conventional SSF. In SAA addition, SAA reduced fermentation time to 24 h owing to increase the initial hydrolysis rate substantially.