• Title/Summary/Keyword: 3d simulation

Search Result 5,242, Processing Time 0.043 seconds

A Study on Atmospheric Environment Visualization by Integrating 3D City Model and CFD Model (3D City모델과 CFD 모델을 통합한 대기환경 시각화 연구)

  • An, Seung-Man;Lee, Ho-Yeong;Sung, Hyo-Hyun;Choi, Yeong-Jin;Woo, Jung-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • The purpose of this study is enhancing CFD model by applying detailed and accurate CFD input data produced from 3D City model and integrating CFD model with 3D city model with OpenGL, 3D city aerodynamic simulation, and visualization tool. CFD_NIMR_SNU model developed by NIMR and SNU and 3D City model produced by NGII were used as input data. Wind flow and pollution diffusion simulator and viewer were developed in this study. Atmospheric environment simulation and visualization tool will save time and cost for urban climate planning and management by enhancing visual communication.

3D Object Modeling for Laser Radar Simulation (레이저레이더 시뮬레이션을 위한 3차원 객체 모델링)

  • Kim, Geun-Han;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The improvement of the performance in laser radar simulation requires fast retrievals of the spatial locations and attributes of objects in response to the laser signals of the simulators. Since the data used in simulation are complex 3D objects such as terrain, buildings and vehicles, and are of large sizes, commonly used 3D modeling tools are not suitable for this use. We proposed a method to store such 3D objects in a database, perform required queries and integrate with visualization tools. We showed the processes for the data modeling based on 3D topological concepts and then building a spatial DBMS. Also, we illustrated the process for accessing and visualizing the stored data using VRML and performed test computations using some laser signal data. With further enhancement on data modeling and LOD problems in visualization, the proposed method will be practically applied in different situations including laser simulation.

  • PDF

Arsenic implantation graph comparing with Dopant diffusion simulation and 1-D doping simulation (performed by synopsys sentaurus process)

  • Im, Ju-Won;Park, Jun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.344-346
    • /
    • 2016
  • 본 논문에서는 3-stream model에 기반한 Dopant diffusion simulator를 사용하여 실리콘 기판 내부의 As이온의 확산을 시뮬레이션한 결과와 Dual-Pearson Analytic model에 기반하여 Ion implantation을 1-D doping simulation한 결과를 토대로 여러 공정 설계에서 diffusion simulator의 사용가능함을 확인하였다.

  • PDF

An Establishment Case of Welding Robot OLP System Using 3D Design Model Information (설계모델정보를 이용한 용접로봇 OLP 시스템 구축 사례)

  • Oh, Sung-Kwan;Chai, Beam-Ho;Eun, Sean-Ho;Sung, Chang-Jae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.43-47
    • /
    • 2007
  • In this paper, we will introduce how we utilize 3D design model information at factory automation field with welding robot OLP system which is in using at out shipyard. At this area, so far, most of design information is used in NC data generation for steel cutting, but we can utilize 3D model information at more wide and complex area likes robot welding. Moreover, OpenGL which is a graphic library can be possible to verify robot NC data is correct or not through 3D simulation even if some one is not a expert at robot handling.

  • PDF

Modeling of the Centerless Infeed (Plunge) Grinding Process

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1026-1035
    • /
    • 2003
  • A computer simulation method for investigating the form generation mechanism in the centerless infeed (plunge) grinding process is described. For a 3-D simulation model of form generation, contact points are assumed to be on least squares contact lines at the grinding wheel, regulating wheel, and work-rest blade. Using force and deflection analyses, the validity of this assumption is shown. Based on the 2-D simulation model developed in the previous work and the least squares contact line assumption, a 3-D model is presented. To validate this model, simulation results were compared with the experimental works. The experiments and computer simulations were carried out using three types of cylindrical workpiece shapes with varying flat length. The experimental results agree well with the simulation. It can be seen that the effect of flat end propagated to the opposite end through workpiece reorientation.

FOFIS : Forest Fire Information Systems (FOFIS: 산불 정보 시스템)

  • 지승도
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.13-28
    • /
    • 1999
  • The main purpose of this paper is to design and implement forest fire information system (FOFIS) for effective prevention of forest fire using GIS, database, 3-D graphics, and simulation techniques. In contrast to conventional fire information systems that are mostly based on the 2-D graphics and analytic modeling approaches, we have proposed the cell-based modeling approaches, i.e., spatial, data, and simulation modeling approaches. The cell-based spatial modeling is proposed by eliminating the cliff effect of the typical elevation model so that it can provide realistic 3-D graphics of the forest fire. The cell-based data modeling of geography, meteorology, and forestry information is also proposed. The cell-based dynamic modeling for forecasting of the fire diffusion is developed using the variable structure modeling techniques. Several simulation tests of FOFIS performed on a sample forest area of Chungdo, Kyungsangbukdo will demonstrate our approaches.

  • PDF

A Study on Implementation of 4D and 5D Support Algorithm Using BIM Attribute Information - Focused on Process Simulation and Quantity Calculation - (BIM 속성정보를 활용한 4D, 5D 설계 지원 알고리즘 구현 및 검증에 관한 연구 - 공정시뮬레이션과 물량산출을 중심으로 -)

  • Jeong, Jae-Won;Seo, Ji-Hyo;Park, Hye-Jin;Choo, Seung-Yeon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • In recent years, researchers are increasingly trying to use BIM-based 3D models for BIM nD design such as 4D (3D + Time) and 5D (4D + Cost). However, there are still many problems in efficiently using process management based on the BIM information created at each design stage. Therefore, this study proposes a method to automate 4D and 5D design support in each design stage by using BIM-based Dynamo algorithm. To do this, I implemented an algorithm that can automatically input the process information needed for 4D and 5D by using Revit's Add-in program, Dynamo. In order to support the 4D design, the algorithm was created to enable automatic process simulation by synchronizing process simulation information (Excel file) through the Navisworks program, BIM software. The algorithm was created to automatically enable process simulation. And to support the 5D design, the algorithm was developed to enable automatic extraction of the information needed for mass production from the BIM model by utilizing the dynamo algorithm. Therefore, in order to verify the 4D and 5D design support algorithms, we verified the applicability through consultation with related workers and experts. As a result, it has been demonstrated that it is possible to manage information about process information and to quickly extract information from design and design changes. In addition, BIM data can be used to manage and input the necessary process information in 4D and 5D, which is advantageous for shortening construction time and cost. This study will make it easy to improve design quality and manage design information, and will be the foundation for future building automation research.

Mold-Flow Simulation in 3 Die Stack Chip Scale Packaging

  • Rhee Min-Woo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.67-88
    • /
    • 2005
  • Mold-Flow 3 Die Stack CSP of Mold array packaging with different Gate types. As high density package option such as 3 or 4 die stacking technologies are developed, the major concerning points of mold related qualities such as incomplete mold, exposed wires and wire sweeping issues are increased because of its narrow space between die top and mold surface and higher wiring density. Full 3D rheokinetic simulation of Mold flow for 3 die stacking structure case was done with the rheological parameters acquired from Slit-Die rheometer and DSC of commercial EMC. The center gate showed severe void but corner gate showed relatively better void performance. But in case of wire sweeping related, the center gate type showed less wire sweeping than corner gate types. From the simulation results, corner gate types showed increased velocity, shear stress and mold pressure near the gate and final filling zone. The experimental Case study and the Mold flow simulation showed good agreement on the mold void and wire sweeping related prediction. Full 3D simulation methodologies with proper rheokinetic material characterization by thermal and rheological instruments enable the prediction of micro-scale mold filling behavior in the multi die stacking and other complicated packaging structures for the future application.

  • PDF

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.