• Title/Summary/Keyword: 3d camera

Search Result 1,632, Processing Time 0.041 seconds

An Easy Camera-Projector Calibration Technique for Structured Light 3-D Reconstruction (구조광 방식 3차원 복원을 위한 간편한 프로젝터-카메라 보정 기술)

  • Park, Soon-Yong;Park, Go-Gwang;Zhang, Lei
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.215-226
    • /
    • 2010
  • The structured-light 3D reconstruction technique uses a coded-pattern to find correspondences between the camera image and the projector image. To calculate the 3D coordinates of the correspondences, it is necessary to calibrate the camera and the projector. In addition, the calibration results affect the accuracy of the 3D reconstruction. Conventional camera-projector calibration techniques commonly require either expensive hardware rigs or complex algorithm. In this paper, we propose an easy camera-projector calibration technique. The proposed technique does not need any hardware rig or complex algorithm. Thus it will enhance the efficiency of structured-light 3D reconstruction. We present two camera-projector systems to show the calibration results. Error analysis on the two systems are done based on the projection error of the camera and the projector, and 3D reconstruction of world reference points.

New single lens stereoscopic camera system for UHD 3D applications (UHD 3D응용을 위한 새로운 single lens stereoscopic camera system 제안)

  • Park, Sangil;Yoo, Sunggeun;Lee, Younghwa;Lee, Taehwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.124-127
    • /
    • 2013
  • 2009년 출시된 영화 "AVATAR"가 stereoscopic방식 3D영화로 대단한 성공을 거둔 이후로 가전시장과 필름 시장에는 많은 3D 영상들이 stereoscopic방식으로 제작되어 유통되게 되었다. 하지만 기존에 제시되어온 two lens stereoscopic camera system은 두 대의 카메라를 사용하기 때문에 광학적 정렬과 기하학적 조절이 매우 어렵기 때문에 stereoscopic 영상을 촬영하고 보급 하는데 많은 문제점을 가지고 있었다. 따라서 하나의 광축을 가진 single lens stereoscopic camera system들이 기존에 제시되어 왔으나 여전히 single lens stereoscopic system에도 문제점이 존재한다. 이에 본 논문에서는 기존에 제시된 stereoscopic camera system을 two lens / single lens로 나누어 조사 분석하고, 분석한 문제점을 해결하기 위한 새로운 single lens stereoscopic camera system을 제안할 것이다.

  • PDF

Correction of Photometric Distortion of a Micro Camera-Projector System for Structured Light 3D Scanning

  • Park, Go-Gwang;Park, Soon-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • This paper addresses photometric distortion problems of a compact 3D scanning sensor which is composed of a micro-size and inexpensive camera-projector system. Recently, many micro-size cameras and projectors are available. However, erroneous 3D scanning results may arise due to the poor and nonlinear photometric properties of the sensors. This paper solves two inherent photometric distortions of the sensors. First, the response functions of both the camera and projector are derived from the least squares solutions of passive and active calibration, respectively. Second, vignetting correction of the vision camera is done by using a conventional method, however the projector vignetting is corrected by using the planar homography between the image planes of the projector and camera, respectively. Experimental results show that the proposed technique enhances the linear properties of the phase patterns that are generated by the sensor.

3 Dimensional Object Reconstruction Using Zoom Camera (줌 카메라를 이용한 3차원 물체 재구성)

  • 주도완;김주영기수용고광식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.927-930
    • /
    • 1998
  • This paper presents a new method for reconstructing 3 dimensional object model using a zoom camera. The proposed method uses zoom images to find the distance(D) between camera and object. Also the method uses images obtained around the object to find an $angle(\theta)$ between two connected planes of the object. With the D and $\theta,$ we can reconstruct the real sized 3-D model of object with less errors without stereo camera or rangefinder.

  • PDF

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF

Development of Color 3D Scanner Using Laser Structured-light Imaging Method

  • Ko, Youngjun;Yi, Sooyeong
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.554-562
    • /
    • 2018
  • This study presents a color 3D scanner based on the laser structured-light imaging method that can simultaneously acquire 3D shape data and color of a target object using a single camera. The 3D data acquisition of the scanner is based on the structured-light imaging method, and the color data is obtained from a natural color image. Because both the laser image and the color image are acquired by the same camera, it is efficient to obtain the 3D data and the color data of a pixel by avoiding the complicated correspondence algorithm. In addition to the 3D data, the color data is helpful for enhancing the realism of an object model. The proposed scanner consists of two line lasers, a color camera, and a rotation table. The line lasers are deployed at either side of the camera to eliminate shadow areas of a target object. This study addresses the calibration methods for the parameters of the camera, the plane equations covered by the line lasers, and the center of the rotation table. Experimental results demonstrate the performance in terms of accurate color and 3D data acquisition in this study.

Development of a Remote Object's 3D Position Measuring System (원격지 물체의 삼차원 위치 측정시스템의 개발)

  • Park, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.60-70
    • /
    • 2000
  • In this paper a 3D position measuring device that finds the 3D position of an arbitarily placed object using a camersa system is introduced. The camera system consists of three stepping motors and a CCD camera and a laser. The viewing direction of the camera is controlled by two stepping motors (pan and tilt motors) and the direction of a laser is also controlled by a stepping motors(laser motor). If an object in a remote place is selected from a live video image the x,y,z coordinates of the object with respect to the reference coordinate system can be obtained by calculating the distance from the camera to the object using a structured light scheme and by obtaining the orientation of the camera that is controlled by two stepping motors. The angles o f stepping motors are controlled by a SGI O2 workstation through a parallel port. The mathematical model of the camera and the distance measuring system are calibrated to calculate an accurate position of the object. This 3D position measuring device can be used to acquire information that is necessary to monitor a remote place.

  • PDF

3D Positioning Accuracy Estimation of DMC in Compliance with Introducing High Resolution Digital Aerial Camera (고해상도 디지털항공사진 카메라 도입에 따른 DMC의 3차원 위치결정 정확도 평가)

  • Hahm, Chang-Hahk;Chang, Hwi-Jeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.743-750
    • /
    • 2009
  • Since aerial photogrammetry by analog camera began in 1972, recently, high resolution digital camera is actively introduced to improve efficiency of aerial photogrammetry. This study investigated the 3D positioning accuracy of DMC(Digital Mapping Camera) among various high resolution aerial digital cameras to be developed for photogrammetry. For the research, we installed control points in test field around Incheon, and acquired analog and digital aerial photographs. By comparing 3D positioning accuracies of analog and digital photographs, there are few difference between two cameras, and the 3D positioning accuracies of two cameras was somewhat increased in case of aerotriangulation using additional control points based on GPS/IMU EO data.

Study of Image Production using Steadicam Effects for 3D Camera (3D 카메라 기반 스테디캠 효과를 적용한 영상제작에 관한연구)

  • Lee, Junsang;Park, Sungdae;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3035-3041
    • /
    • 2014
  • The steadicam effects is widely used in production of the 3D animation for natural camera movement. Conventional method for steadicam effects is using keyframe animation technique, which is annoying and time consuming process. Furthermore it is difficult and unnatural to simulate camera movement in real world. In this paper we propose a novel method for representing steadicam effects on virtual camera of 3D animation. We modeled a camera of real world into Maya production tools, considering gravity, mass and elasticity. The model is implemented with Python language, which is directly applied to Maya platform as a filter module. The proposed method reduces production time and improves production environment. It also makes more natural and realistic footage to maximize visual effects.

Measurement of 3D Shape of Fastener using Camera and Slit Laser (카메라와 슬릿 레이저를 이용한 나사 3D 형상 측정)

  • Kim, Jin Woo;Song, Tae Hun;Ha, Jong Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.537-542
    • /
    • 2015
  • The measurement of 3D shape is important in inspecting the quality of product. In this paper, we present a 3D shape measurement system of fastener using a camera and a slit laser. Calibration structure with slits is used in the extrinsic calibration of the camera and laser. The pose of the camera and laser is computed under the same world coordinate system in the calibration structure. Reflection of laser light on the metal surface causes many difficulties in the robust detection of them on image. We overcome this difficulty by using color and dynamic programming. Motor stage is used to rotate the fastener to recover the whole 3D shape of the surface of it.