• Title/Summary/Keyword: 3d a simulator

Search Result 593, Processing Time 0.031 seconds

Design of LNA Using EM simulator (EM 시뮬레이터를 이용한 LNA 설계)

  • Choi, Moon-Ho;Kim, Yeong-Seuk;Jung, Sung-Il;Lee, Han-Yeong;Jang, Seuk-Hwan;Lee, Jong-Arc
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.873-876
    • /
    • 2005
  • A low noise amplifier(LNA) using electro-magnetic field simulator is designed in standard 0.25um CMOS process. Integrated spiral inductor is simulated using EM field solver. Then LNA is simulated with active device, capacitor and simulated inductor by EM field solver. A S11 and S21 of -15.45dB and 17.8dB at 2.3GHz as simulation results was achieved. A Noise Figure is 2.92dB. And Measurements show a S11 and S21 of -12.4dB and 17.8dB at 2.3GHz. A Noise Figure of 3.3dB was achieved.

  • PDF

Development of Three-Dimensional Ion Implantation Simulator Using Analytical Model (해석모델을 이용한 3차원 이온주입 시뮬레이터 개발)

  • 박화식;이준하;황호정
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.43-50
    • /
    • 1993
  • Three-dimensional simulator for the ion implantation process is developed. The simulator based on an analytical model which would be a choice with high computational efficiency and accuracy. This is an important issue for the simulation of a numerous number of processing steps required in the fabrication of ULSI or GSI. The model can explain scattering and bulk channeling mechanism (1D). It can also explain depth dependent lateral diffusion effect(2D) and mask effect(3D). The model is consist of one-dimensional JPD(Joined Pearson Distribution) function and two-dimensional modified Gaussian functions. Final implanted profiles under typical mask structures such as hole, line and island structure are obtained with varying ion species.

  • PDF

Development of Rollgap Simulator and Its Application to Draft Schedule Adjustment (롤갭 시뮬레이터의 개발과 패스스케쥴 개선)

  • Ahn Jaehwan;Lee Youngho;Lee In-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.163-172
    • /
    • 2004
  • A fast, accurate model for calculating roll gap variables are critical to the implementation of computer based automation systems for cold rolling mills. Based on the work of Fleck and Johnson, rollgap simulator with non-circular arc model was developed using the influence function. This developed model is capable of predicting values of force, torque and slip which can be applied over the wide range of rolling conditions including cold rolling/DR/temper mill with high execution speed. Friction coefficient was obtained as a function of operation conditions through analyzing measured data. After combination of rollgap simulator with production strategy, draft schedule for No.3 RCM (Reversible Cold Rolling Mill) in Incheon works of Dongbu Steel was developed. This draft schedule will be installed in the setup computer of No.3 RCM replacing old Hitachi model.

  • PDF

Design of Driver License Simulation Model Using 3D Graphics (3D 그래픽을 적용한 운전면허 시뮬레이터 설계)

  • Won, Ji-Woon;Hong, Jinpyo
    • Journal of Practical Engineering Education
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • Recently the construction of simulation environment is an important issue in all fields. In case of the training for operating machines such as airplanes or spaceships which cause a huge cost, simulators could be helpful to reduce the costs and training efforts by simulating real situations. When people get a driver's license, too many trainees have to wait for their turns because of the limited number of cars and the small space of training sites. To solve this problem, we have designed and developed the basic design for the simulators. We suggest the Computer 3D Simulation Model for a driver's practice. The concept of this simulator is from a 3D Racing-game which suits for a driving exercise. We provide users with handle-controlled simulation settings to let users feel reality as if they drive in real through this simulator. We also use a 'force-feedback' system which gives handle vibration when users collide against obstacles or exceed lanes. Users can be absorbed in the simulation program and feel the sense of the real. This paper is the study about modeling the driving exercise model of 'computer 3D simulation', and producing and utilizing the simulator through this modeling.

Server and Client Simulator for Web-based 3D Image Communication

  • Ko, Jung-Hwan;Lee, Sang-Tae;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.38-44
    • /
    • 2004
  • In this paper, a server and client simulator for the web-based multi-view 3D image communication system is implemented by using the IEEE 1394 digital cameras, Intel Xeon server computer and Microsoft's DirectShow programming library. In the proposed system, two-view image is initially captured by using the IEEE 1394 stereo camera and then, this data is compressed through extraction of its disparity information in the Intel Xeon server computer and transmitted to the client system, in which multi-view images are generated through the intermediate views reconstruction method and finally display on the 3D display monitor. Through some experiments it is found that the proposed system can display 8-view image having a grey level of 8 bits with a frame rate of 15 fps.

Implementation of Facial Robot 3D Simulator For Dynamic Facial Expression (동적 표정 구현이 가능한 얼굴 로봇 3D 시뮬레이터 구현)

  • Kang, Byung-Kon;Kang, Hyo-Seok;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1121-1122
    • /
    • 2008
  • By using FACS(Facial Action Coding System) and linear interpolation, a 3D facial robot simulator is developed in this paper. This simulator is based on real facial robot and synchronizes with it by unifying protocol. Using AUs(Action Unit) of each 5 basic expressions and linear interpolation makes more various dynamic facial expressions.

  • PDF

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

3D Flight Simulator for Education of Flying Tactics (교육 훈련용 3차원 항공기 시뮬레이터의 구현)

  • 최성윤;채상원;한영신;이칠기
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.1-11
    • /
    • 2003
  • The flight simulator should be made like a actual flight. For the scene of sight, instrument should show the condition of flight and the pilot should catch the altitude, speed, pose and rate of lift of the airplane. The paper describes 3D flight visual training program of driving airplane in practice. It is for beginners using joystick in PC, implements airplane physical equations. And it uses rendering technology to implement vision parts of flying object.

  • PDF

Study on a Navigated Simulator of the Underwater Cleaning Robot (수중청소로봇의 운항 제어용 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Kang, Jin-Il;Hong, Sung-Yul;Park, Han-Il;Seo, Joo-No;Kim, Moon-Hwan;Gwon, Kyeong-Yeop
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.387-393
    • /
    • 2009
  • In this paper, a 3-D simulator was developed to estimate visually the performance of propelling and integrated control system of the underwater cleaning robot. Based on the dynamics analysis of the UCR, the 3-D model of the UCR was used in the simulator in which position and velocity are included Also, an input and control system using a joystick was developed, and the simulator was applied to the input and control of the simulator. Moreover, an integrated navigation control system was designed, and its performance was validated by a way-point simulator including a PI-based fuzzy control law.

Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data (주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현)

  • Kim, Sung-Soo;Jeong, Sang-Yoon;Lee, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.