• Title/Summary/Keyword: 3T3-L1 preadipocyte

Search Result 102, Processing Time 0.027 seconds

Defatted Grape Seed Extracts Suppress Adipogenesis in 3T3-L1 Preadipocytes (포도씨 탈지박 추출물 처리가 3T3-L1 Preadipocyte 내 지방 생성에 미치는 영향)

  • Cho, Young-Min;Lee, Seon-Mi;Kim, Young-Hwa;Jeon, Geon-Uk;Sung, Jee-Hy;Jeong, Heon-Sang;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.927-931
    • /
    • 2010
  • The objective of this study was to evaluate the effect of defatted grape seed extract (DGSE) on adipocyte differentiation in 3T3-L1 preadipocytes. DGSE at 100 ${\mu}g$/mL significantly suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase activity in hormonally stimulated adipocytes, an indicator of adipocyte differentiation. In order to understand the anti-adipogenic effects of DGSE, the changes in the expression of several adipogenic transcription factors including peroxisome proliferator-activated receptor (PPAR) $\gamma$, CCAAT/enhancer-binding protein (C/EBP) $\alpha$ and $\beta$ were investigated using immunoblotting. DGSE suppressed the expression of PPAR$\gamma$, C/EBP$\alpha$, and C/EBP$\beta$ proteins compared with control adipocytes in a dose-dependent manner. This results indicated that DGSE may alter fat mass by directly affecting adipogensis in maturing preadipocytes and thus may have applications for the treatment of obesity.

Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line (국내산 해조류 4종의 물과 에탄올 추출물이 3T3-L1에서 지방세포 분화에 미치는 영향)

  • Oh, Ji-Hyun;Lee, Yunkyoung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.6
    • /
    • pp.990-998
    • /
    • 2015
  • The aim of this study was to examine the cytotoxicity and potential inhibitory effects from four types of edible domestic brown seaweeds, Undaria pinnatifida (UP), Laminaria japonica (LJ), Sargassum fulvellum (SF), and Hizikia fusiforme (HF), on preadipocyte differentiation in 3T3-L1 cell line. Water and ethanol extracts from the four types of seaweeds were prepared and tested for cell viability in the 3T3-L1 cell line by using MTT assay. In addition, various doses of the water extract of seaweeds (WES) and ethanol extract of seaweeds (EES) were treated at the beginning of 3T3-L1 differentiation and continued until the cells were fully differentiated to adipocytes. Oil Red-O staining was performed to determine the potential cell differentiation inhibitory effects of the WES and EES by measuring the levels of lipid droplet accumulation in 3T3-L1 adipocytes. $PPAR{\gamma}$ mRNA expression levels were significantly reduced by WESs of UP, LJ, and HF as well as EESs of LJ and HF. As a result, we observed the superior cell differentiation inhibitory effects of WES compared to that of EES in a dose-dependent manner without any significant cytotoxicity in mouse adipocytes.

In Vitro evaluation of lipid accumulation inhibitory effect in 3T3-L1 cell and antioxidant enzyme activity of Codonopsis lanceolata using different solvent fractions

  • Boo, Hee Ock;Park, Jeong Hun;Kim, Hag Hyun;Kwon, Soo Jeong;Lee, Moon Soon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.292-292
    • /
    • 2017
  • This study was conducted to evaluate the effect of anti-obesity and antioxidant enzyme activities in vitro by different solvent fractions from the roots of Codonopsis lanceolata. The cytotoxicity of different solvent fractions of C. lanceolata on 3T3-L1 preadipocytes were evaluated using the MTT assay, the rate of cell survival progressively decreased in a dose-dependent manner. Butyl alcohol fraction at $200{\mu}g/mL$ exhibited a pronounced cytotoxic effect (75.73%) on 3T3-L1 cell comparable to that of the hexane fraction (79.82%), methylene chloride fraction (84.02%), ethyl acetate fraction (87.62%) and DW fraction (86.30%) at the same concentration. The Oil Red O solution was used to determine whether different solvent fractions of C. lanceolata induce adipocyte differentiation in 3T3-L1 preadipocytes. Confluent 3T3-L1 cells were treated with $50{\mu}g/mL$ concentration of solvent fraction extracts from C. lanceolata. Inhibitory degree of lipid accumulation against solvent fraction extracts showed a significant level compared with the control. Both lipid accumulation and adipocyte differentiation showed relatively high effect on methyl chloride fraction. The root extract of C. lanceolata had the highest SOD enzyme activity of 84.5% in ethyl acetate partition layer and while water partition layer of diploid showed the lowest SOD enzyme activity of 57.9%. The activity of CAT, APX and POD showed a significantly higher activity in ethyl acetate partition layer compared with the other fraction. These results suggested that the roots of C. lanceolata may assist in the potential biological activity on anti-obesity and antioxidant capacity.

  • PDF

The Effects of Dai-saiko-to (Da-Chai-Hu-Tang) on 3T3-L1 Preadipocytes and High-Fat Diet-Induced Obese Mice (대시호탕(大柴胡湯)이 3T3-L1 지방전구세포와 고지방식이 유도 비만쥐에 미치는 영향)

  • Min, Deul Le;Park, Eun Jung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Objectives This experimental study was designed to investigate the effects of Dai-saiko-to (DSH) on differentiation of 3T3-L1 preadipocytes and body weight, serum lipid levels in high-fat diet-induced obese mice. Materials and Methods Cells were incubated with DSH at an indicated concentration (0.01-1 mg/ml) for 24h, then the growth rate was assessed by MTS assay. 3T3-L1 preadipocytes were incubated in DMEM for 2 days with the indicated concentrations of DSH. On Day 6, the cells were fixed and the cellular lipid contents were assessed by Oil-Red-O staining. The expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) as adipocyte-specific proteins were determined by real time RT-PCR and western blotting. Four-weeks old mice (wild-type C57BL/6) were used for all experiments. Body weight gain and serum lipid levels were measured in the obesity-induced mice. Results DSH did not show toxicity even at the concentration of 1 mg/ml and DSH significantly inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. Also, DSH significantly reduced the expressions of $PPAR{\gamma}$ and $C/EBP{\alpha}$ in a dose-dependent manner. Furthermore, DSH significantly reduced body weight gain, serum glucose, total cholesterol and LDL-cholesterol contents in obesity-induced mice. Conclusions These results demonstrated that DSH inhibited 3T3-L1 preadipocyte differentiations and high-fat diet-induced obesity in mice.

The Effect of Ephedrae Herba Pharmacopuncture on Adipocyte Metabolism (마황약침(麻黃藥鍼)이 지방세포 대사에 미치는 영향)

  • Jeong, Jong-Jin;Kim, Byoung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • Objectives : This study was carried out to investigate the effects of Ephedrae Herba pharmacopuncture (EHP) on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibition of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of EHP ranging from 0.01 to 1.0 $mg/m{\ell}$. The effect of EHP on adipogenesis was examined by measuring glycerol-3-phosphate dehydrogenase (GPDH) activity and by oil red O staining. Mature adipocytes from rat epididymal fat pad were incubated with EHP ranging from 0.01 to 1.0 $mg/m{\ell}$ for 3 days. The effect of EHP on lipolysis was examined by measuring free glycerol released. Fat tissue from porcine skin was injected with EHP ranging from 0.1 to 10.0 $mg/m{\ell}$ to examine the effect of EHP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. Proliferation of preadipocytes was significantly inhibited by EHP at the concentration of 1.0 $mg/m{\ell}$. Lipolysis of adipocytes was increased by EHP at the concentration of 0.1, 1.0 $mg/m{\ell}$. Porcine fat tissues were widely injured by EHP at the concentration of 10.0 $mg/m{\ell}$. Conclusions : From the above results, EHP efficiently induces inhibition of preadipocytes proliferation, lipolysis of adipocytes and histologic injury in fat tissues. Therefore, EHP may be useful to treat localized obesity.

  • PDF

Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향)

  • Lee, Soo Jung;Kim, Won Il;Kang, Kyung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

Antiadipogenic Effect of Vitis amurensis Root Methanol Extract and Its Solvent Fractions in 3T3-L1 Preadipocytes (머루근 추출물 및 분획물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Oh, You Na;Hyun, Sook Kyung;Choi, Yung Hyun;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2013
  • Vitis amurensis Rupreche, a sort of grape, grows naturally in Asian countries. It is known for important biological effects such as antioxidation, anti-inflammation, neuroprotection, and angiogenesis inhibition. Although its root is used as a traditional folk medicine in Korea, the root's biological activities are poorly studied. In the present study, the effects of V. amurensis root methanol extract (VARM) and its solvent fractions on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes were investigated. The VARM significantly suppressed adipocyte differentiation, lipid accumulation, and the triglyceride (TG) content of 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. To identify active molecules, the VARM was fractionated with a series of organic solvents including dichloromethane ($CH_2Cl_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH). All the fractions also showed inhibition of lipid accumulation in the 3T3-L1 preadipocytes. The $CH_2Cl_2$ fraction showed the most powerful anti-obesity effect through the modulation of cytidine-cytidine-adenosine-adenosinethymidine (CCAAT)/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expression. Oleanolic acid was one of the main active compounds involved in the anti-obesity activity of the V. amurensis root. These results provide important new insight into the potential potent anti-adipogenic effect of the V. amurensis root and illustrate that one of the main compounds involved in this effect is oleanolic acid.

Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Adipogenesis via AMPK Activation in 3T3-L1 Cells (AMPK 활성화를 통한 (-)-Epigallocatechin-3-gallate의 지방세포분화 억제 효과)

  • Kim, Younghwa
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1035-1041
    • /
    • 2017
  • (-)-Epigallocatechin-3-gallate (EGCG) is a major catechin found in green tea. It is reported that EGCG possesses various health benefits including anti-cancer, antioxidant, anti-diabetes, and anti-obesity. The objective of this study was to investigate the effects of EGCG on adipogenesis via activation of AMP-activated protein kinase (AMPK) pathway in 3T3-L1 preadipocytes. In order to determine the effects of EGCG on adipogenesis, preadipocyte differentiation was induced in the presence or absence of EGCG ($0{\sim}100{\mu}M$) for a period of 6 days. EGCG significantly inhibited fat accumulation and suppressed the expression of adipogenic specific proteins including peroxisome proliferator-activated receptor (PPAR)-${\gamma}$. Also, EGCG markedly increased the activation of AMPK and acetyl-CoA carboxylase (ACC) and the production of intracellular reactive oxygen species (ROS). However, any pretreatment with a specific AMPK inhibitor, compound C, abolished the inhibitory effects of the EGCG on $PPAR{\gamma}$ expression. This study suggests that EGCG has anti-adipogenic effects through modulation of the AMPK signaling pathway and therefore, may be a promising antiobesity agent.

Thaumatin Isolated from Katemfe Fruit of Thaumatococcus daiellii Inhibits 3T3 L1 Adipocytes Differenciation (Thaumatococcus daiellii 열매 유래 토마틴의 3T3-L1 지방전구세포 분화 억제에 의한 항비만 효과)

  • Cha, Jae-Young;Jeong, Jae-Jun;Yang, Hyun-Ju;Park, Jun-Seok;Kim, Hyun-Woo;Kim, Su-Hyun;Jung, Hae-Jung
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.783-787
    • /
    • 2011
  • The effects of thaumatin isolated from katemfe fruit of Thaumatococcus daiellii Benth on 3T3-L1 preadipocyte differentiation was investigated in vitro. 3T3-L1 adipocytes were treated with various concentrations of thaumatin ranging in 0-5 ${\mu}M$. Thaumatin reduced fat accumulation in differentiated 3T3-L1 adipocytes in a dose-dependent manner. 3T3-L1 cell proliferation was 97.0 and 88.3% at 1 and 3 ${\mu}M$ after 8 days of thaumatin treatment, respectively. Thaumatin showed a potent inhibitory effect on stained lipid droplets at a concentration of 3 ${\mu}M$. Thaumatin reduced triglyceride accumulation in differentiated 3T3-L1 cells in a dose-dependent manner, compared with positive control cells. This study provides basic information on the anti-obesity activity of thaumatin.

Antiobesity Activity of Chrysanthemum zawadskii Methanol Extract (구절초 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Chrysanthemum zawadskii, a herbaceous perennial plant belonging to the Compositae, grows wild in Asian countries, including Japan, China, and Korea. The biological, antioxidative, anti-inflammatory, and antibacterial activities of C. zawadskii have been reported, its antiobesity activity has not been elucidated. In the present study, the effect of C. zawadskii methanol extract (CZME) on pancreatic lipase enzyme activity, adipocyte differentiation, and adipogenesis was investigated using an in vitro assay and a cell model system. CZME effectively suppressed lipase enzyme activity in a dose-dependent manner. CZME also inhibited insulin, dexamethasone, 3-isobutyl-1-methylxanthine (MDI)-induced adipocyte differentiation, lipid accumulation, and the level of triglyceride in 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. The antiobesity effect of CZME might be modulated by gene and protein expression of cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) α, C/EBPβ, and the peroxisome proliferator-activated receptor γ (PPAR γ). CZME also triggered lipolysis in a dose-dependent manner in MDI-induced 3T3-L1 preadipocytes. Taken together, these results provide important new insights into the antiobesity activities of C. zawadskii, showing that they involve pancreatic lipase inhibition, as well as antiadipogenic and lipolysis effects. CZME might be a promising source in the field of nutraceuticals. However, the active compounds that confer the antiobesity activities of CZME need to be identified.