• 제목/요약/키워드: 3T3-L1 adipocyte cells

검색결과 239건 처리시간 0.037초

Characterization of Tunicamycin as Anti-obesity Agent

  • Song, Ha-Suk;Kim, Hye-Min;Jung, Sook-Yung;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.162-167
    • /
    • 2009
  • Adipocytes undergo adipocyte stress in the excessive presence of lipid. Adipocyte stress accompanies the typical signs of endoplasmic reticulum (ER) stress: unfolded protein response and overexpression of molecular chaperones. Apoptotic induction in adipocytes is known as a good strategy for treating obesity. The drug "tunicamycin" was tested for its therapeutic potential in inducing apoptosis on differentiating adipocytes of 3T3-L1. When the 3T3-L1 cells, stimulated for adipogenesis, were treated with tunicamycin, they showed typical ER stress symptoms. Despite progression in ER stress, however, the differentiated 3T3-L1 hardly proceeded to apoptosis based on the CHOP protein expression and FACS analysis. This is very different from C2C12, the myogenic counterpart of 3T3-L1, which showed significant apoptosis along with ER stress. This study also characterizes a potential mechanism whereby adipocyte may avoid apoptosis to sustain the pathological state of obesity. The level of GRP94 expression significantly upholds in 3T3-L1 under tunicamycin treatment compared to preadipocytes and C2C-12. When GRP94 expression was inhibited by siRNA, 3T3-L1 showed a higher level of CHOP expression compared to C2C12 cells. In conclusion, adipocytes exert an anti-apoptotic mechanism under ER stress caused by tunicamycin; thus, apoptotic induction in adipocyte is not a viable anti-obesity option. The unusual level of GRP94 may serve as a key role whereby adipocytes reach to the obesity level circumventing the apoptosis.

Hibiscus manihot leaves Attenuate Accumulation of Lipid Droplets by Activating Lipolysis, Browning and Autophagy, and Inhibiting Proliferation of 3T3-L1 Cells

  • Na Gyeong Geum;Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Jin Boo Jeong
    • 한국자원식물학회지
    • /
    • 제36권6호
    • /
    • pp.541-548
    • /
    • 2023
  • In the present study, the effects of HML on lipolysis, adipocyte browning, autophagy, and proliferation were investigated. HML affected lipolysis by increasing the protein levels of ATGL and HSL, and phosphorylation levels of HSL and AMPK. Furthermore, HSL decreased the perilipin-1 levels. In addition, free glycerol content was increased by HML treatment. HML affected adipocyte browning by increasing the protein levels of UCP-1, PGC-1α, and PRDM16. In addition, HML affected autophagy by increasing the levels of LC3-I and LC3-II, and decreasing those of SQSTM1/p62. Moreover, HML affected adipocyte proliferation by suppressing the proliferation of 3T3-L1 cells due to arrest of the cell cycle via blocking the expression of β-catenin and cyclin D1. These results suggest that HML induces lipolysis, adipocyte browning, autophagy, and inhibits excessive proliferation of adipocytes.

Anti-adipocyte differentiation activity and flavonoid content determination by HPLC/UV analysis of tree sprouts

  • Kim, Juree;Jang, Taewon;Kim, Ji Hyun;Shin, Hanna;Park, Jaeho;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.269-275
    • /
    • 2021
  • The in vitro anti-obesity activity of 12 species of tree sprouts in differentiated 3T3-L1 cells and the mechanisms underlying their activity were evaluated. (+)-Catechin and quercetin concentrations in the sprouts were analyzed by HPLC/UV at 270 and 254 nm, respectively. Euonymus alatus (EAT) and Fraxinus mandschuria (FMS) extracts at doses of 50 and 100 ㎍/mL inhibited the accumulation of lipid droplets in differentiated 3T3-L1 cells. Moreover, EAT and FMS downregulated the expression of the CCAAT/enhancer-binding protein-α, adipogenesis-related proteins peroxisome proliferator-activated receptor-γ, and adipocyte P-2α in differentiated 3T3-L1 cells. Tree sprouts with an abundant flavonoid content exerted the highest anti-obesity activity. Concentrations of total flavonoids were the highest in FMS (24.281 mg/g DW) sprouts. These findings could be used to develop health-promoting functional foods or supplements derived from tree sprouts.

레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과 (Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes)

  • 조용석;주성민;황금희;김민숙;김광상;전병훈
    • 동의생리병리학회지
    • /
    • 제33권1호
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 빵의 항산화 및 3T3-L1 지방 전구세포 분화 억제 활성 (Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes)

  • 이창원;박용일;김수현;임희경;정미자
    • 한국식품영양과학회지
    • /
    • 제45권5호
    • /
    • pp.651-663
    • /
    • 2016
  • 옥수수수염, 율무, 표고버섯 그리고 사과껍질 70% 주정 추출물들(CS, JT, LE, AP)은 항산화 활성이 있었고, 그것 중에 CS가 총폴리페놀 함량, 플라보노이드 함량, DPPH 라디칼 소거작용, ABTS 라디칼 소거작용 그리고 환원력과 같은 항산화 효과가 가장 높았다. 지방분화는 CS, JT, LE, AP 그리고 옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 개발 빵 추출물(DB)을 각각 처리한 3T3-L1 지방세포에서 연구하였다. DB1과 DB2는 지방 전구세포 분화 억제 및 항산화 효과가 있었다. 3T3-L1 지방세포에서 중성지방 축적은 실험한 시료들(CS, JT, LE, AP) 중에서 CS가 분화된 3T3-L1 지방세포에서 TG 축적을 가장 억제하였고 3T3-L1에서 지방분화와 관련된 인자들을 조절하였다. CS는 3T3-L1 세포에서 지방구 형성과 지방세포 분화를 농도 의존적으로 억제하였다. 지방분화 동안 다양한 농도(10, 50, $100{\mu}g/mL$)에서 CS와 함께 처리한 3T3-L1 세포에서 $C/EBP{\beta}$, $PPAR{\gamma}$ 그리고 aP2 mRNA와 단백질 수준에 대한 CS의 영향력을 실험하였고, 3T3-L1 지방세포에 CS 처리는 $PPAR{\gamma}$와 aP2 mRNA 발현을 감소시켰다. CS는 역시 지방분화 중에 $C/EBP{\beta}$, $PPAR{\gamma}$와 aP2 단백질의 증가를 현저하게 저해하였다. 개발된 빵들은 CS에 의해 지방 전구세포(3T3-L1 preadipocytes) 분화 억제 효과가 있고, CS는 3T3-L1 지방세포에서 $C/EBP{\beta}$, $PPAR{\gamma}$와 aP2 신호전달경로를 저해함으로써 지방 전구세포 분화 억제 효과를 나타내었다. JT, LE와 AP는 지방 전구세포 분화 억제 효과는 없었지만 강한 항산화 효과가 있었다. 이들 결과는 개발된 빵이 비만예방 및 억제뿐만 아니라 산화적 스트레스에 의해 유발되는 질병에 도움을 줄 수 있는 건강빵이라는 것을 제안하였다.

Anti-adipogenic Effect of Chlorogenic Acid in 3T3-L1 Adipocytes

  • Park, Se-Eun;Choi, Jun-Hui;Lee, Hyo-Jeong;Seo, Kyoungsun;Kim, Seung
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.80-80
    • /
    • 2018
  • Chlorogenic acid is a phenolic compound found in Cudrania tricuspidata fruits. In the present study, the effect of chlorogenic acid on the inhibition of adipogenesis in 3T3-L1 adipocytes was investigated. Cells were stained with Oil red O reagent to detect lipid droplets in adipocytes. The 3T3-L1 cells were lysed and measured for intracellular triglyceride and adipokine by ELISA kit. The protein expression of adipogenesis-related gene was evaluated by Western blot analysis. Chlorogenic suppressed lipid droplet and intracellular triglyceride accumulation in a concentration manner and also decreased secretion of adipokines such as leptin and adiponectin, compared with fully differentiated adipocytes. Treatment of 3T3-L1 cells with chlorogenic acid reduced the protein levels of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and, CCAAT/enhancer binding proteins alpha ($C/EBP{\alpha}$). This indicates that chlrogenic acid was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceridef formation in adipocyte and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$.

  • PDF

대시호탕의 새로운 제형이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향 (Effects for the New Formulation of Daesiho-tang on adipocyte development and differentiation in 3T3-L1)

  • 최혜민;김세진;문성옥;이지범;이하영;김종범;이화동
    • 대한본초학회지
    • /
    • 제33권2호
    • /
    • pp.69-77
    • /
    • 2018
  • Objectives : Daesiho-tang (DSHT) has been widely used in the treatment of cerebral infarct in traditional medicine. However, there was not report on the anti-obesity-related diseases efficacy of DSHT. In this study, we investigated the effects for the new formulation of DSHT, on the adipocyte differentiation cycle in 3T3-L1 cells. Methods : 3T3-L1 cells were treated with DSHT (50, 100, $200{\mu}g/m{\ell}$) during differentiation for 6 days. Also, the inhibitory effect of DSHT against 3T3-L1 adipogenesis was evaluated in various stage of adipogenesis such as early (0-2day), intermediate (2-4day), and terminal stage (4-6day). The accumulation of lipid droplets was determined by Oil Red O staining. and, the expressions of genes related to adipogenesis were measured by RT-PCR and Western blot analyses. Results : DSHT showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affect cell toxicity as assessed by measuring fat accumulation and adipogenesis. In addition, DSHT significantly reduced the expression levels of several adipocyte marker genes including proliferator activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) and CCAAT/ enhancer-binding $protein-{\alpha}$ ($C/EBP-{\alpha}$). Also, the anti-adipogenic effect of DSHT was strongly limited in the intermediate (2-4 day), terminal stage (4-6 day) of 3T3-L1 adipogenesis. In addition, the DSHT treatment down- regulated mRNA expression levels of $PPAR-{\gamma}$,, $C/EBP-{\alpha}$ in mature 3T3-L1 adipocytes. Conclusions : These results suggest that, the ability of DSHT has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. The new formulation of DSHT may be a promising medicine for the treatment of obesity and related metabolic disorders.

감국의 유산균 발효물이 hedgehog 신호를 통한 지방구세포 분화 억제효과 (Inhibitory Effect of Lactic Acid Bacteria-fermented Chrysanthemum indicum L. on Adipocyte Differentiation through Hedgehog Signaling)

  • 최재영;임종석;심보람;양영헌
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.532-541
    • /
    • 2020
  • 본 연구는 지방감소를 위한 소재개발로 감국 유산균 발효물이 갖는 지방구세포 분화 억제효과를 관찰하였다. 감국 추출물의 세포독성을 극복하는 유산균의 발효물을 제작하였다. 3T3-L1 세포주에서 감국 추출물 및 발효물이 갖는 세포독성은 모두 없었다(1day culture). 감국 추출물 처리 대조군과 비교하여 3T3-L1 세포주에 처리시 증식 유도된 발효물을 선별하였다. 감국 추출물 및 발효물의 분화억제 및 세포생존률 FACS분석은 분화 유도된 세포가 모든 실험군에서 줄어들었다. 3T3-L1 세포주에서 감국 추출물과 발효물 처리가 protein kinase B (Akt) pathway활성이 증가하였고, 단백질 발현은 지방구세포로 분화되면서 Gli2의 수준은 감소하였다. Hedgehog를 조절하는 유산균은 KCTC 3115인 것을 알 수 있었다. 분화와 관련된 KCTC 3115 및 KCTC 3109 발효군에서 단백질 수준에서 C/EBPα 및 FAS를 감소, pACC는 증가시키는 것을 확인하였다. 감국 추출물과 4개의 감국 유산균 발효물 중 Lactococcus lactis subsp. lactis KCTC 3115 발효물이 지방구세포 분화 신호를 더 효과적으로 조절하고, hedgehog을 같이 조절하여 지방전구세포의 분화를 억제하는 것을 알 수 있었다. Hedgehog 신호를 조절하면서 분화를 억제하는 물질에 대한 연구가 더 필요할 것으로 판단된다. 따라서 감국 발효물의 생리활성 물질 중 향후 매커니즘 분석을 위한 활성물질의 자료가 더 필요할 것으로 여겨지며, 감국 추출물 및 감국 발효물의 hedgehog 신호조절이 새로운 비만치료제로 개발될 수 있음을 위한 가능성을 제시하고자 한다.

가미이진탕(加味二陳湯) 전탕액과 발효액이 항비만(抗肥滿)효과에 미치는 연구 (The Study on Anti-obesity Effects of Gamiygin-tang Extract and Ferment)

  • 장성진;민들레;박은정
    • 대한한방소아과학회지
    • /
    • 제27권4호
    • /
    • pp.108-121
    • /
    • 2013
  • Objective This study was designed to investigate the effects of Gamiygin-tang (GY) extract (GYE) and fermented solution (GYF) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Materials and Methods High fat diet-fed obese mice and 3T3-L1 adipocytes mice were treated with GYE and GYF and obesity related markers were assessed. A cytotoxicity assay was carried out by MTS assay. Inhibitory effects of GYE and GYF on adipocyte differentiation were carried out by Oil Red O staining. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer binding protein alpha (CEBP-${\alpha}$) were measured by real-time reverse transcriptase-polymerase chain reaction. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors were also determined in relation to protein production/protein levels by western blotting. The anti obesity effects of GYE and GYF were measured in high fat-diet induced obese mice. Various factors were measured from the serum of the high fat-diet mice. Results Though GYE did not show toxicity at the concentration of 1mg/ml, GYF showed toxicity at the concentration of 1mg/ml. The GYE at 0.1 and 1mg/ml inhibited the differentiation of 3T3-L1 cells, and the GYF also inhibited the differentiation of 3T3-L1 cells. The effect of GYE on adipocyte differentiation factors including PPAR-${\gamma}$ and CEBP-${\alpha}$ was investigated and compared to the corresponding concentration levels of GYF. GYE and GYF both suppressed the RNA and protein levels of adipocyte differentiation factors. In the animal test both GYE and GYF reduced weight gain. GYE and GYF reduced blood cholesterol, TG and LDL levels. GYF better reduced blood cholesterol levels. Conclusions These results demonstrate that GYE and GYF exerts anti-obesity effect in 3T3-L1 cells and obese mice induced by high-fat diet.

Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells

  • Lim, Heejin;Yeo, Eunju;Song, Eunju;Chang, Yun-Hee;Han, Bok-Kyung;Choi, Hyuk-Joon;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • 제9권6호
    • /
    • pp.599-605
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS: Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS: Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) as well as the mRNA levels of $CEBP{\alpha}$, $PPAR{\gamma}$, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS: These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity.