• 제목/요약/키워드: 3T3-L1 adipocyte

검색결과 357건 처리시간 0.024초

진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구 (Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes)

  • 조현균;한민호;홍수현;최영현;박철
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.285-292
    • /
    • 2015
  • 본 연구에서는 3T3-L1 지방전구세포가 지방세포로 분화되는 과정에서 진피 에탄올 추출물(ethanol extracts of citrus peel, EECP)이 유발하는 항비만 효능에 대해서 조사하였다. 3T3-L1 세포의 생존율 및 증식에 영향을 미치지 않는 농도의 EECP를 처리하였을 경우 지방세포에서 특징적으로 나타나는 lipid droplet의 형성과 triglyceride의 생성도 억제되는 것으로 나타났다. EECP가 유발하는 지방세포로의 분화억제에는 PPARγ, C/EBPα, C/EBPβ 및 SREBP-1c 등과 같은 adipogenic transcription factors의 발현억제가 관여하는 것으로 나타났으며, 그 결과로 aP2 및 Leptin과 같은 adipocyte expressed genes의 발현도 억제되는 것으로 조사되었다. 또한 EECP는 AMPK 및 ACC의 인산화를 유발하였으며, AMPK 억제제인 Compound C를 이용하여 AMPK의 활성을 억제하였을 경우 EECP에 의한 AMPK의 인산화와 adipogenic transcription factors의 억제현상이 회복되었다. 이상의 결과에서 EECP는 AMPK signaling pathway를 통하여 항비만 효능을 가진다는 것을 알 수 있었으며, 향후 비만 예방 및 억제와 관련된 기능성 소재로서의 진피의 활용 가능성을 제시한 것으로서 그 가치가 매우 높을 것으로 생각된다.

Psidium guajava L. leaf extract inhibits adipocyte differentiation and improves insulin sensitivity in 3T3-L1 cells

  • Choi, Esther;Baek, Seoyoung;Baek, Kuanglim;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • 제15권5호
    • /
    • pp.568-578
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Psidium guajava L. (guava) leaves have been shown to exhibit hypoglycemic and antidiabetic effects in rodents. This study investigated the effects of guava leaf extract on adipogenesis, glucose uptake, and lipolysis of adipocytes to examine whether the antidiabetic properties are mediated through direct effects on adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with 25, 50, 100 ㎍/mL of methanol extract from guava leaf extract (GLE) or 0.1% dimethyl sulfoxide as a control. Lipid accumulation was evaluated with Oil Red O Staining and AdipoRed assay. Immunoblotting was performed to measure the expression of adipogenic transcription factors, fatty acid synthase (FAS), and AMP-activated protein kinase (AMPK). Glucose uptake under basal or insulin-stimulated condition was measured using a glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose. Lipolysis from fully differentiated adipocytes was measured by free fatty acids release into the culture medium in the presence or absence of epinephrine. RESULTS: Oil Red O staining and AdipoRed assay have shown that GLE treatment reduced lipid accumulation during adipocyte differentiation. Mitotic clonal expansion, an early essential event for adipocyte differentiation, was inhibited by GLE treatment. GLE inhibited the expression of transcription factors involved in adipocyte differentiation, such as peroxisome proliferator-activated receptor 𝛄 (PPAR𝛄), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP-1c). FAS expression was also decreased while the phosphorylation of AMPK was increased by GLE treatment. In addition, GLE increased insulin-induced glucose uptake into adipocytes. In lipid-filled mature adipocytes, GLE enhanced epinephrine-induced lipolysis but reduced basal lipolysis dose-dependently. CONCLUSIONS: The results show that GLE inhibits adipogenesis and improves adipocyte function by reducing basal lipolysis and increasing insulin-stimulated glucose uptake in adipocytes, which can be partly associated with antidiabetic effects of guava leaves.

Hibiscus manihot leaves Attenuate Accumulation of Lipid Droplets by Activating Lipolysis, Browning and Autophagy, and Inhibiting Proliferation of 3T3-L1 Cells

  • Na Gyeong Geum;Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Jin Boo Jeong
    • 한국자원식물학회지
    • /
    • 제36권6호
    • /
    • pp.541-548
    • /
    • 2023
  • In the present study, the effects of HML on lipolysis, adipocyte browning, autophagy, and proliferation were investigated. HML affected lipolysis by increasing the protein levels of ATGL and HSL, and phosphorylation levels of HSL and AMPK. Furthermore, HSL decreased the perilipin-1 levels. In addition, free glycerol content was increased by HML treatment. HML affected adipocyte browning by increasing the protein levels of UCP-1, PGC-1α, and PRDM16. In addition, HML affected autophagy by increasing the levels of LC3-I and LC3-II, and decreasing those of SQSTM1/p62. Moreover, HML affected adipocyte proliferation by suppressing the proliferation of 3T3-L1 cells due to arrest of the cell cycle via blocking the expression of β-catenin and cyclin D1. These results suggest that HML induces lipolysis, adipocyte browning, autophagy, and inhibits excessive proliferation of adipocytes.

대시호탕의 새로운 제형이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향 (Effects for the New Formulation of Daesiho-tang on adipocyte development and differentiation in 3T3-L1)

  • 최혜민;김세진;문성옥;이지범;이하영;김종범;이화동
    • 대한본초학회지
    • /
    • 제33권2호
    • /
    • pp.69-77
    • /
    • 2018
  • Objectives : Daesiho-tang (DSHT) has been widely used in the treatment of cerebral infarct in traditional medicine. However, there was not report on the anti-obesity-related diseases efficacy of DSHT. In this study, we investigated the effects for the new formulation of DSHT, on the adipocyte differentiation cycle in 3T3-L1 cells. Methods : 3T3-L1 cells were treated with DSHT (50, 100, $200{\mu}g/m{\ell}$) during differentiation for 6 days. Also, the inhibitory effect of DSHT against 3T3-L1 adipogenesis was evaluated in various stage of adipogenesis such as early (0-2day), intermediate (2-4day), and terminal stage (4-6day). The accumulation of lipid droplets was determined by Oil Red O staining. and, the expressions of genes related to adipogenesis were measured by RT-PCR and Western blot analyses. Results : DSHT showed inhibitory activity on adipocyte differentiation at 3T3-L1 preadipocytes without affect cell toxicity as assessed by measuring fat accumulation and adipogenesis. In addition, DSHT significantly reduced the expression levels of several adipocyte marker genes including proliferator activated $receptor-{\gamma}$ ($PPAR-{\gamma}$) and CCAAT/ enhancer-binding $protein-{\alpha}$ ($C/EBP-{\alpha}$). Also, the anti-adipogenic effect of DSHT was strongly limited in the intermediate (2-4 day), terminal stage (4-6 day) of 3T3-L1 adipogenesis. In addition, the DSHT treatment down- regulated mRNA expression levels of $PPAR-{\gamma}$,, $C/EBP-{\alpha}$ in mature 3T3-L1 adipocytes. Conclusions : These results suggest that, the ability of DSHT has inhibited overall adipogenesis and lipid accumulation in the 3T3-L1 cells. The new formulation of DSHT may be a promising medicine for the treatment of obesity and related metabolic disorders.

3T3-L1 Adipocyte에 인삼 사포닌과 EGCG (Epigallocatechin Gallate)처리가 Leptin, Hormone Sensitive Lipase, Resistin mRNA- 발현에 미치는 영향 (The Effects of Ginseng Saponin-Re, Re and Green Tea Catechine; ECGC (Epigallocatechin Gallate) on Leptin, Hormone Sensitive Lipase and Resistin mRNA Expressions in 3T3-L1 Adipocytes)

  • 김성옥;황은주;최원경
    • Journal of Nutrition and Health
    • /
    • 제39권8호
    • /
    • pp.748-755
    • /
    • 2006
  • The purpose of this study was to find out effects of treatment of ginsenoside Re, Rc and EGCG on mRNA expressions of leptin, hormone sensitive lipase (HSL) and resistin in 3T3-L1 adipocytes. The concentrations of EGCG were treated with $0.01{\times}10^{-7},\;0.1{\times}10^{-7},\;1{\times}10^{-7}\;and\;1{\times}10^{-6}\;or\;100{\mu}g/ml$ ginsenoside Re, Rc in culture cell for 13 days. mRNA expression of leptin wasn't expressed in preadipocyte but according to differentiation of adipocyte, the that of mRNA expression was decreased at gensenosids or EGCG treated cells compared with non treated adipocyte. Expression of HSL mRNA was increased in G-Re, G-Rc and EGCG treated cells compared with non treated cells. The resistin level was significantly decreased in adipocytes treated with G-Re, G-Rc and EGCG. These pattern was similar to leptin expression. These results support that treatment of gensenosides or EGCG in 3T3-L1 adipocyte resulted to affect of leptin and resistin as well as HSL mRNA levels, accordingly, levels of leptin and HSL will be acted by signalling body fat stores to the hypothalamus which in turn regulates food intake andenergy expenditure to maintain body weight homeostasis. And also regulation of resistin mRNA will prevent to diabetics attacked with obesity. In conclusion, we suggest that consumption of ginseng saponine or EGCG might prevent human diabetics or/and obesity.

감국의 유산균 발효물이 hedgehog 신호를 통한 지방구세포 분화 억제효과 (Inhibitory Effect of Lactic Acid Bacteria-fermented Chrysanthemum indicum L. on Adipocyte Differentiation through Hedgehog Signaling)

  • 최재영;임종석;심보람;양영헌
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.532-541
    • /
    • 2020
  • 본 연구는 지방감소를 위한 소재개발로 감국 유산균 발효물이 갖는 지방구세포 분화 억제효과를 관찰하였다. 감국 추출물의 세포독성을 극복하는 유산균의 발효물을 제작하였다. 3T3-L1 세포주에서 감국 추출물 및 발효물이 갖는 세포독성은 모두 없었다(1day culture). 감국 추출물 처리 대조군과 비교하여 3T3-L1 세포주에 처리시 증식 유도된 발효물을 선별하였다. 감국 추출물 및 발효물의 분화억제 및 세포생존률 FACS분석은 분화 유도된 세포가 모든 실험군에서 줄어들었다. 3T3-L1 세포주에서 감국 추출물과 발효물 처리가 protein kinase B (Akt) pathway활성이 증가하였고, 단백질 발현은 지방구세포로 분화되면서 Gli2의 수준은 감소하였다. Hedgehog를 조절하는 유산균은 KCTC 3115인 것을 알 수 있었다. 분화와 관련된 KCTC 3115 및 KCTC 3109 발효군에서 단백질 수준에서 C/EBPα 및 FAS를 감소, pACC는 증가시키는 것을 확인하였다. 감국 추출물과 4개의 감국 유산균 발효물 중 Lactococcus lactis subsp. lactis KCTC 3115 발효물이 지방구세포 분화 신호를 더 효과적으로 조절하고, hedgehog을 같이 조절하여 지방전구세포의 분화를 억제하는 것을 알 수 있었다. Hedgehog 신호를 조절하면서 분화를 억제하는 물질에 대한 연구가 더 필요할 것으로 판단된다. 따라서 감국 발효물의 생리활성 물질 중 향후 매커니즘 분석을 위한 활성물질의 자료가 더 필요할 것으로 여겨지며, 감국 추출물 및 감국 발효물의 hedgehog 신호조절이 새로운 비만치료제로 개발될 수 있음을 위한 가능성을 제시하고자 한다.

Perilla Leaf Extract Inhibits 3T3-L1 Preadipocytes Differentiation

  • Kim, Mi-Ja;Kim, Hye-Kyung
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.928-931
    • /
    • 2009
  • Effects of perilla leaf extracts (PLE) on adipocytes differentiation of 3T3-L1 cells were examined. Ethanol extract of PLE treatment significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, gene expression levels of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), the key adipogenic transcription factor, were markedly decreased by PLE. PLE also suppressed adipocyte fatty acid binding protein (aP2) and glycerol-3-phosphate dehydrogenase (GPDH), which are adipogenic marker proteins. These results suggest that PLE treatment suppressed differentiation of 3T3-L1 adipocytes, in part by down-regulating expression of adipogenic transcription factor and other specific target genes.

가미이진탕(加味二陳湯) 전탕액과 발효액이 항비만(抗肥滿)효과에 미치는 연구 (The Study on Anti-obesity Effects of Gamiygin-tang Extract and Ferment)

  • 장성진;민들레;박은정
    • 대한한방소아과학회지
    • /
    • 제27권4호
    • /
    • pp.108-121
    • /
    • 2013
  • Objective This study was designed to investigate the effects of Gamiygin-tang (GY) extract (GYE) and fermented solution (GYF) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Materials and Methods High fat diet-fed obese mice and 3T3-L1 adipocytes mice were treated with GYE and GYF and obesity related markers were assessed. A cytotoxicity assay was carried out by MTS assay. Inhibitory effects of GYE and GYF on adipocyte differentiation were carried out by Oil Red O staining. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer binding protein alpha (CEBP-${\alpha}$) were measured by real-time reverse transcriptase-polymerase chain reaction. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors were also determined in relation to protein production/protein levels by western blotting. The anti obesity effects of GYE and GYF were measured in high fat-diet induced obese mice. Various factors were measured from the serum of the high fat-diet mice. Results Though GYE did not show toxicity at the concentration of 1mg/ml, GYF showed toxicity at the concentration of 1mg/ml. The GYE at 0.1 and 1mg/ml inhibited the differentiation of 3T3-L1 cells, and the GYF also inhibited the differentiation of 3T3-L1 cells. The effect of GYE on adipocyte differentiation factors including PPAR-${\gamma}$ and CEBP-${\alpha}$ was investigated and compared to the corresponding concentration levels of GYF. GYE and GYF both suppressed the RNA and protein levels of adipocyte differentiation factors. In the animal test both GYE and GYF reduced weight gain. GYE and GYF reduced blood cholesterol, TG and LDL levels. GYF better reduced blood cholesterol levels. Conclusions These results demonstrate that GYE and GYF exerts anti-obesity effect in 3T3-L1 cells and obese mice induced by high-fat diet.

Evaluation of the inhibition of the differentiation of pre-adipocytes into matures adipocytes

  • Morvan, Pierre Yves
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.440-447
    • /
    • 2003
  • Up until today, the key to contouring has been resumed in these two alternatives, either limiting the adipocyte storing capacity by modulating lipogenesis, or by stimulating lipolysis to eliminate adipocyte lipid content. Another interesting way could be the regulation of adipocyte differentiation. In this work, we have evaluated the effect of a brown algal extract of Sphacelaria scoparia (SSE) on the differentiation of pre-adipocytes into adipocytes. A pre-adipocyte line (3T3-L 1) was used. The differentiation was evaluated by the measure of produced lipids thanks to red oil coloration and spectrophotometry, and also by the expression of adipocyte differentiation markers: enzymes such as fatty acid synthase (FAS) and stearoyl CoA desaturase (SCD), or membrane proteins such as glucose transporters (GLUT -4) and fatty acid transporters (FAT) expressed on the surface of human adipocytes. These genes are under control of two transcription factors: CAAT-enhancer binding protein (c/EBP alpha) and sterol response element binding protein (SREBP1). All these markers were analysed at different stages of differentiation by RT -PCR. Sphacelaria extract (SSE) inhibits pre-adipocytes differentiating into adipocytes following a dose-dependant relation, using a kinetics similar to retinoic acid. It decreases the expression of mRNA specific to FAS, FAT, GLUT -4, SCD1, c/EBP alpha and SREBP1. Moreover, SSE regulated on collagen 1 and collagen 4 expression. A stimulation of collagen 1 was also measured in human skin fibroblasts. Thus, SSE performs as a genuine differentiation inhibitor and not only as a lipogenesis inhibitor, and could be used in slimming products.

  • PDF

미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향 (Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes)

  • 김혜진;강창한;김성구
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1052-1056
    • /
    • 2012
  • 미역(Undaria pinnatifada)은 낮은 칼로리 및 요오드의 원료로써 천연체중조절식품으로 알려져 있다. 미역이 체중조절식품으로 알려져 있음에도 불구하고, 지방세포 분화 및 지방축적에 관한 저해 기작은 연구가 미비하다. 본 연구에서는 3T3-L1에서 지방세포로 분화가 일어나는 단계에서 미역에탄올추출물의 효과 및 기작을 확인하였다. 미역에탄올추출물의 독성과 지방축적저해효과는 MTT assay, Oil red O staining, RT-PCR과 western blot으로 분석하였다. 미역에탄올추출물은 50 ${\mu}g/ml$의 농도에서 독성을 띄지 않았다. 3T3-L1의 분화 및 지방세포에서 triglyceride축적과정동안 50 ${\mu}g/ml$의 미역에탄올추출물을 처리하였으며, 미역에탄올추출물은 지방세포에서 triglyceride의 축적을 40% 감소시켰다. 지방세포 특이적 단백질인 Peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin과 Hormone sensitive lipase (HSL)의 발현은 RT-PCR과 western blot으로 확인하였다. $PPAR{\gamma}$의 과발현은 지방세포의 분화를 촉진시킨다. 또한 지방세포 크기의 증가와 세포 내 triglyceride의 함량에 따라 leptin은 세포 외로 분비된다. 그러므로 $PPAR{\gamma}$와 leptin은 비만의 지표로 사용된다. 첨가한 미역에탄올추출물의 농도가 높아질수록 $PPAR{\gamma}$와 leptin의 발현이 억제되었다. 이상의 결과를 통하여, 미역의 에탄올 추출물은 지방전구세포의 분화를 억제시키며, 지방세포 내 triglyceride의 축적을 저해하는 것으로 판단된다.